
1

Foosball Robot Object Detection and Angle
Estimation

Joseph Lundy

Abstract—This project looks at implementing a visual system for a foosball robot. This system must track positions of the ball and
foosmen, and also estimate the rotation of foosmen. Our approach was to train a YoloV7 model to detect the balls and foosmen, and
use the bounding boxes of the foosmen to estimate the rotation angle. To generate the training data, a single video was used, and
passed into the SAM2 segmenter to obtain masks which were used to derive bounding boxes. The Yolov7 model was trained on 100
iterations, and generalized well in other videos. To obtain data for angle estimation analysis, ArUco markers were placed on the rod
ends, and two videos were captured - an overhead video to record the bounding boxes of the foosmen, and a side-view video to record
the ArUco markers. The ArUco markers were used to compute the ‘ground-truth’ angle, and this was compared against the angle
inferred by the bounding boxes. We found that the arcsine method can give a decent approximation of the rod angle, and that if the
foosman quadrant is known, the foosman angle can be estimated across the full 360 degrees of motion. As well, the trend of the
bounding box center can indicate the sign of the footman’s rotation angle. However, this simple approximation requires calibration and
results in some nonlinearities. In conclusion, we found that the Yolov7 model was ideally suited as an real-time object detector, and for
future work, the Yolov7 model should be retrained to classify the foosman quadrant as well.

Index Terms—ArUco, YoloV7, SAM2, Object Detection, Object Tracking

✦

1 INTRODUCTION

A S part of a previous project, we constructed a simple
robotic system for a miniature foosball table [1]. In

order for the robot to play against a human player, at
minimum, it needs to be able to estimate the position of
the ball. Since the robot is actuating two of the rods, we can
assume that its actuators also have corresponding sensors to
measure the angle of the rods it is attached to. However, due
to manufacturing imperfections, there is a lot of variance in
the actual mounting angle of the foosmen, and it would be
ideal if another measurement of the foosmen orientation can
be obtained. As well, it would be beneficial for the robot
AI to receive information of the pose of the opponent’s
foosmen, to allow effective passing and aiming. An over-
head camera system is an ideal sensor for this measurement
problem, as it requires minimal changes to the board layout
and can easily be mounted to different foosball tables.
Previously, we implemented a rudimentary ball tracking
system using color detection [2]. However, this is not a
robust tracking method across different lighting conditions,
and is unsuitable for tracking the position and orientation of
the foosball rods. In Figure 1a, we see the annotations output
by this color tracker, and 1b shows the computed color
masks. The masks are quite imperfect. While adequate for
ball tracking, they require tuning for lighting conditions and
adjustments to the algorithm settings for different colors.
It also would not generalize well for a patterned ball. For
tracking the foosmen, the color masks are highly unsuitable.
A more robust approach for foosmen and ball detection
is required, as well as an algorithm that can be used to
measure the foosman rotation angle from the video feed.
We discuss various approaches for these two problems in
the next section.

Tracker FPS Performance

CSRT 44 Very good - Tracks ball until very last frames
Boosting 62 Mediocre – loses ball after occlusion; tracks foosman

poorly
KCF 69 Very poor - Loses ball and foosman very quickly
MIL 26 Mediocre – loses ball immediately; can track foosman
TLD 29 Good – can track ball throughout, very noisy detec-

tion; performs worse on foosman
Median
Flow

80 Poor – loses ball immediately; can track foosman but
detection box grows

MOSSE 80 Very poor – loses ball immediately; loses foosman
after rotation

TABLE 1: Performance of correlation-based trackers on sin-
gle foosball

2 RELATED WORK

The first problem our system must solve is the tracking
problem. In [3], the authors present an overview of tracking
algorithms, dividing them into 2 categories:

1) Correlation-filter based tracking
2) Deep learning based tracking

While some correlation-filter trackers can be quite com-
putationally efficient, many of these methods have poor
performance handling occlusions. We performed an exper-
iment on the following algorithms to see how well they
tracked the foosball in a sample video. Table 1 summarizes
the performance and typical FPS obtained for each method.
These tests were performed on a single GPU machine. From
this experiment, we see that none of the correlation-filter
approaches are suitable for this application.

The SORT [4] algorithm is a real-time tracking method,
which uses a CNN object detector to obtain the bounding



2

(a) Color tracking input image with annotations

(b) Color tracking detection mask

Fig. 1: Outputs of color tracking algorithm

boxes of objects, then simply uses the Kalman Filter and
Hungarian algorithm for tracking. This algorithm is highly
suitable for our application, but requires a suitable object
detector model. One very fast object detector model is
YoloV7 [5]. While it would need to be retrained, we found
that it is a highly suitable candidate for transfer learning, as
it was able to weakly detect the foosball and foosmen with
two of its pre-existing classes: ‘person’ and ‘sports ball’. This
can be seen in Figure 2.

The second problem we need to solve is the angle esti-
mation problem. ArUco markers [6] are a highly effective
method for visual pose estimation. One simply needs to
place a marker on the target object and calibrate their
camera so that the camera matrix and distortion coefficients
are known. When an image of the target object is captured,
the marker is detected in the image and from the black and
white pattern its 3D orientation can be estimated. If the
size of the marker is known beforehand, its position to the
camera can also be estimated. This would be a highly
suitable method for measuring the angle of the foosmen,
but there are two problems with this approach. The first is

Fig. 2: Detected objects in foosball table image from pre-
trained YoloV7 model

that it requires additional modification to the foosball table,
which is undesired. The second is that since the foosmen
can make 360 degree rotations, a single marker would not
be sufficient to fully capture the foosman pose. Even if a
second marker were placed on the rear of the foosman, there
would be a ‘blind spot’ when the foosmen are in the upright
position. Having multiple markers on each foosman also
makes the angle estimation more complicated, and requires
extra calibration of the orientation of each marker on the
foosman. Nonetheless, as we will discuss below, we made
use of ArUco markers to obtain a ‘ground-truth’ measure-
ment of the rod angles for our angle estimation analysis.

3 PROPOSED METHOD

3.1 Object detection and tracking
From our conclusions above, we propose using the SORT
algorithm with YOLOv7 as the object detector. We will
retrain the model on a previously captured video, to detect
two classes:

• 0 - ball
• 1 - foosman

Due to time constraints for this project, we will focus
only on the detection performance of our model, and leave
aside tracker implementation for future work.

3.2 Angle estimation of foosmen
After examining the layout of the robotic system, we de-
termined that it is possible to directly infer the angle of
the foosman with the width of the detection bounding box,
using the arcsine method. Figure 3 provides an illustration
of the trigonometry. There is a major assumption here which
is that the camera perspective is relatively level, and that
its incline can be ignored. This can actually be accounted
for if we measure the relative position of the camera to the
table beforehand or automatically with foosball markers,
but for our analysis we will see what accuracy can be
obtained with this imperfection. The second assumption is
that the camera has relatively little distortion. Distortion
can be corrected if the parameters of the camera model
are known. For our analysis, we assume the camera has
relatively low distortion.



3

Fig. 3: Heuristic for estimating foosman angle

The proposed angle detection algorithm has two stages:

1) Online Calibration stage
2) Detection and estimation stage

The online calibration stage works as follows:

1) Rotate each rod 360 degrees
2) Record the bounding boxes
3) Record the maximum and minimum box extremities

for each foosman
4) Record the maximum and minim box width
5) Compute the rod center using the recorded maxima

and minima

The estimation algorithm works as follows:

1) Obtain the foosman bounding box
2) See if the center-x of the bounding box is above

or below the rod center - this will tell you the
whether the rotation angle is positive or negative
with respect to the vertical z-axis

3) Compute angle from

c = W − boxmin

c = R = boxmax − boxmin

θ = arcsin(
c

R
)

Taking another look at the estimation algorithm, one will
realize that it will compute the same angle if the foosman is
rotated by (θ) or (θ+90), the bounding box width will be the
same at these corresponding angles. We propose training
a detector to directly classify the foosman rotation quad-
rant. From visual inspection of the photos, this classification
task seems plausible as the foosmen are distinctive from the
front and back. The positive and negative information can
be inferred either using the bounding box center, or from
a model detecting a foosman facing ‘up’ or ‘down’. To
determine whether the angle is greater or less than 90
degrees, a model could detect whether the bottom of the
foosman’s feet are visible or not. Given the quadrants the
angle is computed as follows:

if q == 0 then
theta = theta

else if q == 1 then
theta = 180 - theta
theta = -180 + theta

else if q == 3 then
theta = -theta

end if
Due to time constraints, we did not train a model for

this particular classification problem. In our later analysis,
we look at the usefulness of the center-x method, and for
our estimation of the ‘full-rotation’ accuracy we assume the
quadrant of the foosman is known.

4 DATASETS

4.1 Object detection datasets

4.1.1 Training data
To generate the data for retraining the YoloV7 model, a sam-
ple video was chosen. We used the SAM2 [7] segmentation
model to detect masks for the foosmen and foosball. Due to
memory constraints from using a single GPU machine, the
labeling task was split up into 3 groups of 3-4 objects. The
algorithm for labeling worked as follows:
For each object group:

1) Take the first frame of the video
2) Mark 2 coordinates to initialize the mask of each

object
3) Pass in the coordinates and all image frames to the

SAM2 video, which returns masks of the objects in
each frame

4) For each frame:

• Reject outliers coordinates in the mask which
deviate by more than 5 standard deviations
from the mask center

• Bounding box coordinates are the maximum
and minimum coordinates of the pixels in the
mask

This method was used to generate approximately 501 image
labels from the selected training video, which were split into
400 training images, and 50 validation and 51 test images.

4.1.2 Test data
Several videos were captured in order to test the ability
of the re-trained YoloV7 model to generalize. In total, 7
additional videos were used to generate separate test data
sets. The first labeled video was the cellphone video cap-
tured in for the bounding box and angle estimation analysis.
The second video was captured with a webcam that has
significant distortion and reduced resolution. The other 6
videos were captured using various ball colors - pink (the
same color used in the training videos), orange, light orange,
green, blue and white (with a soccer ball pattern). In order
to reduce labeling time, a sequential subset of images were
selected from each video. The videos were converted into
JPEG image frames using the ffmpeg tool. For the 1st video,
every 10th frame was selected in order to sample the full
rotation motion of each rod. For the webcam video, every
50 frames were sampled. For the ball color videos, 10 evenly
spaced frames were selected from each video. Initially we



4

attempted to use the SAM2 model to automatically gener-
ate object masks for the test videos. However, the SAM2
model can be quite sensitive to initial prompts, resulting in
unsatisfactory bounding box computations. For this reason,
we opted to use the Roboflow platform to manually label
the test images. The performance of the model on each test
set is discussed in Section 5.

4.2 Obtaining bounding boxes and ground truth angles
for angle estimation
To obtain angle data for the angle estimation analysis,
ArUco markers were placed on the end of each of the four
rods, as well as a fifth ArUco marker on the table wall. In
order to perform pose estimation of the ArUco markers,
a calibration routine was performed with a camera, using
a checkerboard pattern. A set of calibration images were
taken, with the foosmen aligned to be perpendicular with
respect to the table surface. From the relative positions of
the rod markers and the ‘reference’ marker, a calibration
rotation was computed. The rotation of the foosman relative
to the table is given by:

Rcalibration = R−1
referenceRaligned

Rrod = RrefRmarker

Rfoosman = RcalibrationRrod

An experiment was performed capturing 2 simultaneous
videos. The first camera was positioned to capture the rota-
tion of the ArUco markers on the rods. The second camera
was placed overhead to capture images of the foosmen.
A simple frame alignment between videos the videos was
performed. Ground truth rod angles were computed for
each frame from the ArUco markers using the equations
described above. Using a similar method as described in
3.1, ground truth bounding boxes were computed for each
foosman. These bounding boxes were used to compute the
‘best possible’ angle estimation using the methods described
in 3.2. Due to time constraints, we did not use YoloV7
generated bounding boxes for the angle estimation analysis.

5 EXPERIMENTAL RESULTS

5.1 Object detection
5.1.1 Training
The YoloV7 model was trained on 400 training images over
100 iterations, using the base yolov7-tiny parameters. All
metrics were evaluated based on a confidence threshold of
0.001 and an intersection over union of 0.64. Tables 2 and
3 shows the effect of one training setting, which enables
rotation of input images when performing training. Two
models were trained, the first without this setting, and the
second with this setting. These are compared on two test
videos. The first test video has a horizontal view of the
foosball table, and captures the full 360 degree rotation of
each rod. The second video was captured with a webcam
with high distortion and lower resolution. As can be seen,
enabling this setting resulted in a large improvement in
all performance metrics, especially recall and mean average
precision. The rest of the results use the performance of the

Model Precision Recall mAP@0.5 mAP@0.5:0.95
Model 1 0.886 0.795 0.812 0.396
Model 2 0.973 0.858 0.943 0.483

TABLE 2: Detection performance - all classes - for test video
1 (rod rotation)

Model Precision Recall mAP@0.5 mAP@0.5:0.95
Model 1 0.841 0.517 0.685 0.321
Model 2 1 0.92 0.993 0.65

TABLE 3: Detection performance - all classes - for test video
2 (warped webcam)

second model (Model 2), which rotated input images during
training and had much better performance detecting the
foosmen. The performance of Model 2 on the initial dataset
is summarized in Table 4.

Dataset Precision -
all classes

Recall - all
classes

mAP@0.5 mAP@0.5:0.95

Train 0.996 0.991 0.996 0.802
Test 0.999 0.989 0.997 0.83
Val 0.988 0.968 0.984 0.802

TABLE 4: Performance on training data

5.1.2 Generalization on different videos
Table 5 summarizes the performance obtained on the first
test video data set, which captured the full 360 rotations of
each rod. Here we see the precision, recall and mAP@0.5
scores remain high, but the mAP@0.95 suffers.

Class Precision Recall mAP@0.5 mAP@0.5:0.95
all 0.976 0.929 0.969 0.457
ball 0.979 1 0.995 0.432
foosman 0.973 0.858 0.943 0.483

TABLE 5: Performance on rotation test video

Table 6 summarizes the performance was measured on a
video captured using the webcam . Here we see that the
precision for the precision and recall for the foosman class
remains high, but the precision of the ball detection is
impacted. Curiously, the model performs better on this
video on the mAP@0.5:0.95 metric. After examining the
footage, it was found that for one of the rods in the rotation
video, the bounding boxes of the foosmen at large angles
only captured half of the actual foosman. Curiously, the
model worked well capturing the bounding boxes for the
foosmen on the other three rods. The output of the retrained
model on a cellphone image and webcam image are shown
in Figure 4

Class Precision Recall mAP@0.5 mAP@0.5:0.95
all 0.827 0.938 0.936 0.627
ball 0.655 0.957 0.879 0.604
foosman 1 0.92 0.993 0.65

TABLE 6: Performance on high-distortion webcam video

5.1.3 Generalization on different ball colors
Six additional test videos were captured with different ball
colors. Table 7 summarizes the model performance for each



5

(a) Detected objects on cellphone video

(b) Detected objects on warped webcam video

Fig. 4: Detection frames from retrained model

ball color. From this we see that the ball detection general-
izes poorly on certain colors, worst of all being green, white
and light orange. Nonetheless, given that it has moderate
performance on other colors like orange and blue, the model
seems to have learned to detect the ball based on more than
just the color pink. After inspecting the detection video for
the white ball, it appeared that the ball was classified in
almost every frame as a foosman. From this we can infer
that the model has learnt to associate the white color with
a foosman, which is not unsurprising given that one of the
foosmen has a white torso, and all the foosmen have white
shoes. This suggests the model would benefit from further
training on images of balls with various colors, or perhaps
training on grayscale images.

Color P R mAP@.5 mAP@.5:.95
Green 0.998 0.5 0.632 0.359
Pink 0.991 1 0.995 0.667
Orange 1 1 0.995 0.845
Light orange 0.666 0.4 0.5 0.306
Blue 0.778 0.7 0.757 0.323
White 0 0 0.0371 0.0217
All 0.692 0.6 0.623 0.394

TABLE 7: Ball detection performance on different colors

5.1.4 Detection speed
When the model is run as a detector on an input video,
the typical FPS was 270 on average. The slowest measured
performance was 172 FPS. All tests were performed on a PC
with a NVIDIA GeForce RTX 3060 GPU. Table 8 shows the
inference, and non-maximum suppression times reported
by the model. From these results, assuming that an added

tracking algorithm is not too computationally expensive, we
expect that a tracker based on this yolov7 detection model
will massively outperform the ’classical’ algorithms listed in
Table 1.

Video Inference (ms) NMS (ms) Total FPS
Average 3 0.7 270
Worst-case 3.3 2.5 172

TABLE 8: Typical detection speed

5.2 Angle estimation

Figure 5 below shows the relative position of the bounding
box centers relative to the computed center. As can be
seen, there appears to be a strong correlation between the
center offset and the sign of the angle, however with this
computation there is a noticeable negative bias. We can
conclude that using the center offset has promise as a means
to compute the sign of the angle. For the next part of our
analysis, we assume the quadrant has been inferred and
look at the average accuracy over a full 360 degree rotation.

Fig. 5: Bounding box center over 360 degree rotation

For this analysis, we examine the computed angles of a
single foosman. In Figure 6 we see the estimated and ground
truth angles for a single foosman undergoing a full 360
degree rotation. The first plot shows the ground truth angle
in blue. The ’raw’ estimated angle is shown in orange, and
was simply computed using the equation described in 3.2.
The ’full’ angle is was computed using the known quadrant
information. As can be seen, the estimated angle roughly
follows the same trend as the ground truth angle. A simple
linear regression was also computed between the estimated
and ground truth angles with the following parameters
shown in Table 9.

slope (rad) 1.0727
intercept (rad) 0.0661
R-squared 0.975158

TABLE 9: Simple linear regression between ground truth
angle and estimated angle using quadrant

Figure 7 shows the angle estimation using the simple linear
regression method. In the figure we see that some of the bias



6

Fig. 6: Estimated and ground truth angle for one 360 degree
rotation of a foosman

Fig. 7: Angle estimation with simple linear regression

in the positive angels is corrected, however there is a slight
worsening of performance in the second half of the graph.
The average and maximum error for both methods are
shown in Table 10. The simple linear regression results in
a slight improvement in average error but a significantly
worse maximum error.

Estimated Linear regression
Average Error (deg) 10.2 9.2
Maximum Error (deg) 24 29

TABLE 10: Angle estimation error

The two graphs in Figure 8 highlight some of the non-
linearities in the angle estimation. For the first graph, we
see a bias of 18 degrees in for computed angles above 20
degrees, and a non-linearity corresponding to the region
of 5 and 20 degrees of the ground truth signal, where
the computed angle has an inverse trend. In the second
graph, we see a bias of roughly 12 degrees for negative
angles above -45, but between -45 and -120 the trend of
the estimated angle very weakly correlates to the ground
truth angle. From these observations, we can conclude the
following:

1) If it is acceptable to only be able to compute angles
from -45 to +90, our method, inferring sign from
the bounding box center, may be adequate if the
accepted error is +/- 18 degrees

2) If a more robust angle estimation is required over
the full 360 degrees of rotation, a non-linear regres-
sion is likely required.

(a) Non-linearities for region 0 < θ < 100

(b) Non-linearities for region −100 < θ < 0

Fig. 8: Angle estimation non-linearities

6 CONCLUSION

In summary, we have shown that the yoloV7 model is
a suitable detection model for this application, and that
good detection performance can be obtained from just a
single training video. We have also shown that the arcsine
heuristic can be used to approximate the true angle of a
given foosman. To implement a solution to the tracking
problem, additional work needs to be done to implement the
SORT algorithm so that the individual foosmen are tracked
from frame to frame. In terms of the angle estimation,
much more work needs to be done to obtain a robust angle
estimation. Firstly, a model should be trained to classify
the foosmen based on which rotation quadrant they are in.
Secondly, the yoloV7 model should be refined to improve
the mean average precision score for an intersection over
union threshold of 0.95. This is so that the bounding boxes
are as accurate as possible for angle estimation. Third, the
pose of the camera should be estimated either by using
ArUco markers or by triangulation of the table edges, which
can be measured beforehand, so that its perspective can
be accounted for. Fourth, we recommend implementing a
non-linear regression model to address non-linearities in the
angle estimation. Finally, it is likely there will still be noise
in the estimated angle, and so our final recommendation is
to implement a Kalman filter for the angle estimation.



7

7 CODE, DATASETS AND VIDEOS

7.1 Code
Project repo:
https://github.com/jclundy/csc2529-project
YoloV7 fork:
https://github.com/jclundy/yolov7-copy
Sam2 fork:
https://github.com/jclundy/sam2-copy

7.2 Datasets
Test data sets can be found here:
https://universe.roboflow.com/foosballproject/
foosball-table-qfkml

7.3 Videos
Test videos can be viewed in this youtube playlist:
https://youtube.com/playlist?list=
PLge4HMdctiLV0xNT80ETUOM5fFKkDF73V&si=
uxMS4V7iaegubKe1

REFERENCES

[1] J. Lundy, “Design of a robotic foosball goalie system.” [Online].
Available: https://joelundy.wordpress.com/wp-content/uploads/
2022/01/wkrpt-400-university-of-waterloo.pdf

[2] ——, “Using aruco markers to define region of
interest for foosball ball tracking,” 2022. [Online].
Available: https://joelundy.wordpress.com/2022/04/21/
using-aruco-markers-to-define-region-of-interest-for-foosball-ball-tracking/

[3] K. Du and A. Bobkov, “An overview of object detection and
tracking algorithms,” Engineering Proceedings, vol. 33, no. 1, 2023.
[Online]. Available: https://www.mdpi.com/2673-4591/33/1/22

[4] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple online
and realtime tracking,” CoRR, vol. abs/1602.00763, 2016. [Online].
Available: http://arxiv.org/abs/1602.00763

[5] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “Yolov7:
Trainable bag-of-freebies sets new state-of-the-art for real-time
object detectors,” 2022. [Online]. Available: https://arxiv.org/abs/
2207.02696

[6] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and
M. Marı́n-Jiménez, “Automatic generation and detection of highly
reliable fiducial markers under occlusion,” Pattern Recognition,
vol. 47, no. 6, pp. 2280–2292, 2014. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0031320314000235

[7] N. Ravi, V. Gabeur, Y.-T. Hu, R. Hu, C. Ryali, T. Ma, H. Khedr,
R. Rädle, C. Rolland, L. Gustafson, E. Mintun, J. Pan, K. V.
Alwala, N. Carion, C.-Y. Wu, R. Girshick, P. Dollár, and
C. Feichtenhofer, “Sam 2: Segment anything in images and
videos,” arXiv preprint arXiv:2408.00714, 2024. [Online]. Available:
https://arxiv.org/abs/2408.00714

https://github.com/jclundy/csc2529-project
https://github.com/jclundy/yolov7-copy
https://github.com/jclundy/sam2-copy
https://universe.roboflow.com/foosballproject/foosball-table-qfkml
https://universe.roboflow.com/foosballproject/foosball-table-qfkml
https://youtube.com/playlist?list=PLge4HMdctiLV0xNT80ETUOM5fFKkDF73V&si=uxMS4V7iaegubKe1
https://youtube.com/playlist?list=PLge4HMdctiLV0xNT80ETUOM5fFKkDF73V&si=uxMS4V7iaegubKe1
https://youtube.com/playlist?list=PLge4HMdctiLV0xNT80ETUOM5fFKkDF73V&si=uxMS4V7iaegubKe1
https://joelundy.wordpress.com/wp-content/uploads/2022/01/wkrpt-400-university-of-waterloo.pdf
https://joelundy.wordpress.com/wp-content/uploads/2022/01/wkrpt-400-university-of-waterloo.pdf
https://joelundy.wordpress.com/2022/04/21/using-aruco-markers-to-define-region-of-interest-for-foosball-ball-tracking/
https://joelundy.wordpress.com/2022/04/21/using-aruco-markers-to-define-region-of-interest-for-foosball-ball-tracking/
https://www.mdpi.com/2673-4591/33/1/22
http://arxiv.org/abs/1602.00763
https://arxiv.org/abs/2207.02696
https://arxiv.org/abs/2207.02696
https://www.sciencedirect.com/science/article/pii/S0031320314000235
https://www.sciencedirect.com/science/article/pii/S0031320314000235
https://arxiv.org/abs/2408.00714

	Introduction
	Related Work
	Proposed Method
	Object detection and tracking
	Angle estimation of foosmen

	Datasets
	Object detection datasets
	Training data
	Test data

	Obtaining bounding boxes and ground truth angles for angle estimation

	Experimental Results
	Object detection
	Training
	Generalization on different videos
	Generalization on different ball colors
	 Detection speed

	 Angle estimation

	Conclusion
	Code, Datasets and Videos
	Code
	Datasets
	Videos

	References

