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Embedding Fourier Features for Low-light
Enhancement

Jinyu Liu

Abstract—Low-light enhancement is a complex and challenging task due to the variety of noise, inconsistent color mapping, and detail
loss in the low light images. It is a computer vision task currently dominated by deep learning models, such as HVI-CIDNet, which adapt
to the changes in illumination ranges and complex interactions between brightness and color. However, deep learning approaches tend
to be biased toward performing well on low-frequency components of an image. For this work, our goal is to encode frequency domain
information into a state of the art low-light enhancement model like HVI-CIDNet. Our experiments find the last encoding layer of a U-Net
model is the optimal layer to encode this frequency information for gains in low-light enhancement performance and visual quality.

Index Terms—Computational Photography, Low-Light Imaging, Deep Learning, Multi-Modal Networks
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1 INTRODUCTION

LOW-light imaging refers to the capture and processing
of scenes under conditions with limited illumination.

The lack of sufficient lighting can significantly degrade
the quality of the captured images. At capture time, some
operations can be applied to mitigate the effect of limited
lighting, but all have their own drawbacks. For example,
increasing the ISO increases the sensitivity of the image
sensors to light, but also amplifies the amount of noise cap-
tured by the sensor. Increasing the exposure time will only
work if the scene is static, otherwise motion blur artifacts
are introduced. Finally, using flash to artificially brighten
the environment may introduce undesirable highlights and
unbalanced lighting.

Low-light enhancement is the computer vision task that
involves improving the perceptive quality of images cap-
tured under low-light conditions. The aim of low-light en-
hancement is to improve brightness and clarity, while min-
imizing noise and distortion artifacts. Low-light enhance-
ment has a wide range of applications in numerous areas,
including surveillance, autonomous driving, and computa-
tional photography. As a result, low-light enhancement has
emerged as an exciting research area.

Recently, advances in this area have been dominated by
deep learning based solutions [1]. These solutions typically
have higher accuracy, more robustness to noise, and are
faster than conventional algorithmic methods. However, an
interesting phenomenon observed in neural networks is that
they are biased towards learning less complex functions [2].
For computational imaging tasks, this means that neural
networks tend to perform well in the low-frequency regions
of an image and poorly on the high-frequency regions of the
image.

This project focuses primarily on exploring if embedding
frequency features into a deep learning network can help re-
duce the effect of this low-frequency bias. More specifically,
it examines if we can effectively implement cross-attention
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to extract meaningful information from the Fourier domain
to enhance the performance of a low-light enhancement
model.

2 RELATED WORK

2.1 Fourier Features in Computational Imaging

Fourier features are representations of signals or images
in the frequency domain, typically obtained by applying a
Fourier transform. The frequency information in an image
helps to identify fine details and edges, which are typically
present in high frequency regions of the image, and overall
structure and smooth textures, which are typically present
in low frequency regions of the image.

The properties of Fourier features have been explored
in deep neural networks extensively. Works such as [3]
have explored the use of Fourier features in convolution
blocks to increase the receptive field of a convolution kernel
to be global. This ensures that the earlier layers in the
convolutional neural network have vision of the entire input
image, and have shown improved performance in image
and facial recognition tasks. Earlier works such as [4] have
analyzed the behavior of convolutional neural networks
when the layers are put in the frequency domain, introduc-
ing a variety of tools such as spectral pooling and spectral
re-parametrization of convolution filters. These techniques
been have shown to improve translation invariance and
converge faster than spatial domain layers in some tasks.

2.2 Neural Networks for Low-Light Image Enhance-
ment

The first machine learning approach for low-light enhance-
ment was LLNet [5], which employed a stack of denoising
autoencoders. These denoising autoencoders were responsi-
ble for learning to adaptively enhance and denoise synthet-
ically darkened images, and generalized well onto naturally
low-light images.

Instead of directly computing loss from the RGB im-
age channels, other works in low-light enhancement used
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Retinex theory [6] to separate illuminance and reflectance
maps from the input image and used these maps as input.
Retinex-Net [7] was a pioneer in using this method and had
better image enhancement performance than other models
at this time. This paper also introduced the LOw-Light
dataset (LOL), which comprised of low/normal light image
pairs captured by varying exposure time and ISO of real
scenes. This dataset became a popular benchmark in the
low-light enhancement space. Unfortunately, Retinex-based
models tended to have issues with color shifts and contain
color bias. These issues were explored in later works.

More recently, HVI-CIDNet [8] has been released to
address color misalignment issues. HVI-CIDNet works by
first transforming the input image into a trainable color
space, Horizontal/Vertical Intensity (HVI). The ability for
the color space to be trained reduces the color instability
during enhancement. When released, HVI-CIDNet was state
of the art on the LOL dataset.

2.3 Fusion
There are various way to combine information from mul-
tiple inputs in a neural network. Works like [9] found
that multi-modal models that use RGB and depth inputs
outperform single-modality RGB or depth models that have
similar architecture. In addition, the work suggests that mid-
dle level information exchange produced the most increase
in performance. Another work [10] found similar results
in that dense fusion (analogous to middle fusion) outper-
formed both early and late fusion. This work confirmed
that multi-modal models have better performance in middle
fusion in various different tasks.

3 PROPOSED METHOD

In this paper, we will explore the various methods for
multi-modal fusion for the computational imaging task of
low-light image enhancement. We want to separate out
the Fourier features from the input image by applying a
fast Fourier transformation on the image. The goal of this
work to see if a multi-modal network that takes the Fourier
features and input image can have improved results over the
single input network. We also aim to find the best method
for fusing the two inputs together.

Past works on multi-modal fusion have dealt with syn-
chronized inputs, such as RGB-depth pairs [9] or CT-PET
scans [10]. Fourier features differ in that they operate glob-
ally, and are not synchronized locally. That is, any input at
pixel (x, y) for the RGB input will not correspond to the
same pixel location in the Fourier input.

3.1 HVI-CIDNet Baseline Architecture
The baseline model we will be using for the pipeline is HVI-
CIDNet [8]. As previously mentioned, this model has state
of the art performance on the commonly used LOL dataset.

A diagram for the HVI-CIDNet framework can be found
in Figure 1. To address the common color misalignment
problems, the HVI color space has a trainable mapping
from the RGB space. The first few layers transform the
RGB image into the HVI color space. The intensity map
represents the maximum value of the input image along

any of the channels. As such, we propose it makes the
most sense to encode Fourier features into the Intensity
channel, as it would be the most sensitive to details and edge
discontinuities. The image in the HVI color space is then
fed into the enhancement network, which is a U-Net based
network that performs the main processing. We will modify
the network here, introducing early/middle/late fusion.

3.2 Encoding Fourier Features
The first fusion approach we will attempt is early fusion. At
the beginning of the enhancement network, we will apply
the fast Fourier transform on the RGB input image to get
the Fourier representation of the image. Other works have
used convolution layers to fuse the inputs together, however
these convolution layers have limited receptive fields. Since
the Fourier representation is not locally synchronized, the
relevant Fourier information might not be present in the
convolution’s receptive field. Instead, to encode this Fourier
representation into the intensity channel, we will employ
cross-attention between the two inputs. The intensity chan-
nel will serve as the query and the keys and values will be
obtained from the Fourier features. This is done before the
intensity features are extracted from the input and before the
enhancement network is run. A diagram of this is shown in
Figure 2, on the left.

(a) Encoding the Fourier
input into an Intensity
Map

(b) Encoding the Fourier
input into the embedding
of the U-Net

Fig. 2: Cross-attention mechanism for encoding Fourier in-
formation into the Intensity information.

For late fusion, we will apply the same encoding method
as for early fusion, except we will encode the Fourier fea-
tures into the intensity channel output of the enhancement
network instead of the input. Since the inputs’ sizes are all
identical, no modifications need to be made to the cross-
attention mechanism.

Since the enhancement network employs a U-Net archi-
tecture, the middle embedding of the network is made up of
more dimensions than the Fourier representation. To ensure
the dimensions match, we apply a trainable fully-connected
linear layer to transform the Fourier input, ensuring the
inputs to the cross-attention mechanism are compatible. A
diagram for this can be found in Figure 2, on the right.

Due to the increased number of channels, we also apply
layer normalization to stabilize the attention scores during
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Fig. 1: Overview of the HVI-CIDNet architecture. Taken from [8].

training [11]. Since the dimensionality for the input for early
and late fusion is 1, we did not use layer normalization for
them.

3.3 Training Parameters
3.3.1 Dataset
We will be using LOLv1 for training and testing. LOLv1
is made up of 500 images, which we split 485:15 for train-
ing:test datasets. We will use a batch size of 2 for training.
The images are originally of size 400x600 and in RGB
format. We perform random crop on the images down to
size 400x400 and normalize the inputs with the same mean
and variance as the standard convention for images trained
on the ImageNet dataset. We also augment the data by
applying random horizontal and vertical flip.

3.3.2 Experiment Settings
We will be training the baseline model and fusion-modified
models using the Adam optimizer [12] for 1500 epochs over
all the training data. We use a learning rate of 1 × 10−5

initially and steadily decrease the learning rate to 1 × 10−8

using the cosine annealing scheme [13].
We use the same loss as the original HVI-CIDNet paper

[8], which is a combination of L1 loss L1, structural similar-
ity (SSIM) loss Ls [14], edge loss Le [15], and perceptual loss
Lp [16] between the training and test images in HVI colour
space. The total loss becomes:

l( ˆXHV I , XHV I) = λ1 · L1( ˆXHV I , HHV I)

+ λs · Ls( ˆXHV I , HHV I)

+ λe · Le( ˆXHV I , HHV I)

+ λp · Lp( ˆXHV I , HHV I))

where λ1, λs, λe, λd are the weights for their respective loss
components.

This loss is then weighted by λHV I , and added to the
same loss function but over the RGB color space. Therefore,
the total loss function L becomes

L = λHV I · l( ˆXHV I , XHV I) + l( ˆXRGB , XRGB)

Unfortunately, the default values for the loss weights
provided by the HVI-CIDNet authors did not produce sat-
isfactory results. Instead, we performed grid search on the

loss weights and found the following values performed the
best: λHV I = 1.5, λ1 = 2.5, λs = 0.7, λe = 10, λp = 0.05

4 EXPERIMENTAL RESULTS

4.1 Qualitative Results

In Figure 3, we see that the middle fusion based model pro-
duces results with illumination closest to the ground truth.
It also produces colors most similar to the ground truth.
However, the bottom row of Figure 3 has some saturation
loss in color. Even so, the perceptive quality is the highest
for the middle fusion result, and it is the only fusion result
that surpasses the baseline in perceptive quality.

Augmenting the model by adding early fusion seemed
to reduce the saturation and created less vibrant colors,
resulting in a muted visual effect. We hypothesize the rea-
son for this behavior is that the Fourier transformation is
very complex and difficult to encode correctly. When we
are passing this information through the skip connections,
the model is not disentangling the complex information
properly. As a result, the model is tending toward more
conservative predictions, resulting in the muted color.

On the other hand, late fusion result exhibits regions
of excessive or unatural color saturation. It also seemed to
lose some edge details in regions of extremely low light,
seen in the top row of Figure 3. We suspect that encoding
the Fourier information at the output intensity feature map
was ineffective since the model had already formed a strong
prediction on the output at this stage. Few layers follow this
encoding layer and it is difficult for the model meaningfully
incorporate the Fourier encoding in a beneficial way, and
thus the additional information may have corrupted the
output.

4.2 Quantitative Results

We compare our fusion-modified HVI-CIDNet architectures
against the baseline and each other using various metrics.
These metrics include the peak signal-to-noise ratio (PSNR),
SSIM, and perceptive quality loss, shown in Table 1 and
plotted in Figure 4.

Note these benchmarks confirm that middle fusion
based fusion produced the best results, outperforming the
baseline model in PSNR, SSIM, and perceptual quality. We
also verify that early fusion and late fusion based models
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(a) Low-light im-
age example 1

(b) High-light im-
age example 1

(c) Baseline output
example 1

(d) Early fusion ex-
ample 1

(e) Middle fusion
example 1

(f) Late fusion ex-
ample 1

(g) Low-light im-
age example 2

(h) High-light im-
age example 2

(i) Baseline output
example 2

(j) Early fusion ex-
ample 2

(k) Middle fusion
example 2

(l) Late fusion ex-
ample 2

Fig. 3: LOLv1 test set examples and output from the various models.

perform worse than the baseline in PSNR, SSIM, and per-
ceptual quality. Early fusion works slightly better than late
fusion in terms of SSIM and perceptual quality, but slightly
worse than late fusion in terms of PSNR.

TABLE 1: Quantitative Benchmarks of the various model
architectures

Model PSNR SSIM Perceptual Loss

Baseline 19.8997 0.8182 0.1293
Early Fusion 15.3205 0.6869 0.3236

Middle Fusion 22.1694 0.8382 0.1160
Late Fusion 15.4061 0.6590 0.3168

Fig. 4: PSNR and SSIM bar graphs of the various model
architectures.

5 CONCLUSION

5.1 Summary

In this work, we evaluate the performance of a single
modality low-light enhancement network and experiment
to see if we get any performance gains from integrating
another input in the Fourier space. We find that early
and late fusion of these additional Fourier features do not
improve the model performance in terms of PSNR, SSIM,
and perceptual quality. However, when we embed these
features in an embedding layer, we see improvements in
all the above metrics over the baseline model.

5.2 Limitations
The baseline model and the fusion modifications have only
been evaluated on the LOLv1 dataset. Numerous other low-
light enhancement datasets are available, including See-in-
the-Dark dataset [17] and LOLv2 [18]. It’s possible there is
a data sparsity problem and it would be interesting to see
if there are any changes in the results if we increasing the
dataset size and variety.

In addition, the HVI-CIDNet is unique in that it works
in it’s own color space. It is not immediately clear whether
or not these results extend to other models working in the
RGB color space. One potential interaction is that the HVI
color space is trained to integrate the Fourier features better.
However it could also be the case that the complexity results
in training instabilities that make it difficult for the inputs
to be fused. More experimentation is needed and a potential
future work could be to evaluate a RGB-based model and
see if augmenting it to encode Fourier space features would
have the same effect as it did on HVI-CIDNet.

Lastly, we found during experimentation that HVI-
CIDNet was very sensitive to hyperparameter changes.
Small adjustments in learning rate and loss weights would
sometimes produce an fully black image or a noisy image.
Due to the large number of hyperparameters, we cannot
make the conclusion that the results we obtained are the
best possible results for the model architecture, just the best
results we were able to find.
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