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Abstract 
The demand for high-speed, high-quality image sensors has surged due to modern 

applications requiring rapid adaptability to changing motion and lighting conditions. 

Conventional image sensors, commonly found in budget smartphones, face limitations 

with slower capture rates, resulting in motion blur and compromised image quality during 

fast action and sudden lighting shifts. While high-speed sensors can mitigate motion 

artifacts, their high cost and power requirements render them impractical for many 

applications. Recently, coded-exposure cameras have emerged as a viable alternative, 

enabling burst capture with low power by compressing high temporal resolution into single 

captures; however, it is desirable to achieve similar performance for continuous video 

capture. In this work, we propose a continuous compressive image acquisition system 

utilizing coded exposure with simultaneous exposure and readout control. This innovative 

approach achieves both flexible spatial and temporal resolution while maintaining 

continuous video capability. Our system operates at a native low-power readout of 30 

frames per second (fps) and achieves an impressive effective output video rate of 480 fps 

with a 10x reduction in dead time compared to prior implementations. This results in 

satisfactory performance with seamless motion capture between consecutive frames, 

enhancing image quality and adaptability in real-time scenarios. 

 

 

 



Introduction 
Coded exposure was initially implemented using digital micromirror devices (DMDs), 

enabling users and computer vision systems to exercise considerable control over the 

radiometric and geometric properties of the imaging system. [1]. 

In addition to exploring variations in field of view, radiometric, and geometric properties, 

previous studies have investigated the temporal characteristics of various coded-

exposure techniques, including their applications in deblurring [2]. In conventional single-

exposure photographs, motion blur can occur due to moving objects or camera motion. 

However, coded-exposure techniques can rapidly open and close the shutter using a 

pseudo-random binary sequence during exposure, allowing the motion blur to retain 

decodable details of the moving subject. 

Recent advancements have transitioned from DMDs to electronic exposure control at the 

CMOS pixel level. Coded-Exposure Pixel (CEP) cameras permit exposure programming 

at the individual pixel level [3]. Unlike global-shutter pixels that expose all pixels for the 

same duration, CEP cameras can partition each frame into multiple subframes (N 

subexposures), enabling selective light sensing within each subexposure. This capability 

allows for advanced multi-exposure imaging within a single readout frame, facilitating the 

analysis of scenes multiple times per frame with varying camera and illumination codes. 

This provides enhanced flexibility in how scenes are illuminated and how incoming 

photons are selectively captured. 

Previously, coded exposure was applied to generate a compressive burst video output 

with locally varying speeds by assigning specific coded patterns to different motion 

regions [4]. While this strategy effectively balances high-spatial-resolution static areas 

with high-temporal-resolution moving areas, it still encounters limitations in continuous 

video output due to dead time. 

Figure 1 provides a depiction of how a coded exposure camera operates. In the left 

section of the figure, we can observe the sensor's exposure phase, during which light 

integration is modulated through pixel masking. This masking process can be performed 

rapidly and multiple times, allowing the overall exposure period to be subdivided into 

smaller, programmable time units referred to as subexposures. For each of these 

subexposures, we have the flexibility to select specific pixels that will collect 

photocharges, enhancing control over how light is captured. 

In this project, we utilize a sophisticated camera design where each pixel has two charge-

collecting nodes, or taps. This feature allows the masking operation to direct charge 

integration to either of the two nodes, providing further customization in how light data is 

gathered since no light information is lost. 



One application of this feature, explored in this project, is the creation of masks that adopt 

Bayer-like patterns to distribute exposure across selected subsets of pixels over time. 

This approach enables us to choose tiles of varying sizes (NxN), resulting in a total of N² 

subsets from the pixel array. Each subset captures different exposures of the scene 

throughout the exposure period, thereby allowing these subsets to be exposed at a rate 

N² times faster than the camera's overall exposure rate. However, this advantageous 

increase in temporal resolution comes with a trade-off: while enhancing the ability to 

capture rapid movements, it simultaneously reduces the spatial resolution by a factor of 

N. 

A drawback of the existing coded-exposure camera is that the readout operates 

independently and does not align with the exposure phase. During the readout process, 

exposure effectively ceases, creating a temporal gap between full frames that is referred 

to as deadtime. Although this feature still permits burst imaging, it presents significant 

challenges for achieving continuous video capture, limiting the camera's effectiveness in 

dynamic filming scenarios. 

 

 

Fig. 1. Overview of a coded exposure camera operation. The left part illustrates the exposure 

phase, highlighting how pixel masking modulates light integration. The timing diagram 

demonstrates the subdivision of the overall exposure period into programmable subexposures, 

and the deadtime period during consecutive exposure phases. Source: adapted from [4]. 

 

This project seeks to achieve a substantial reduction in exposure deadtime, allowing for 

continuous video capture with a seamless transition between full frames. This is 

accomplished by modifying the camera control firmware to permit simultaneous exposure 

and readout, which significantly decreases the time gap between exposure phases. We 

present experimental results that include a qualitative analysis of images captured using 

the same set of masks with both firmware versions, comparing the perceptible effects of 

deadtime in the video frames. Furthermore, we provide a quantitative analysis by 

measuring the absolute time intervals detected between exposure phases. 

 



System Design 
The following subsections detail the development of the firmware, software API, and 

capture & post-processing software.  

Figure 2 illustrates the proposed operation of the sensor during the exposure and readout 

phases. On the left side of the figure, the Bayer-like masks applied during exposure 

segment the pixel array into tiles of size NxN, referred to as super-pixels. The timing 

diagram on the right outlines the exposure and readout operations.  

Because one unit pixel per tile integrates photocharge during each subexposure, it 

requires N subexposures to fully expose a set of rows, with each of those rows separated 

by N-1 additional rows. Consequently, the proposed readout operation can start without 

waiting for all subexposures to finish. Instead, it waits for N subexposures to complete 

and then scans through the specific rows that were just exposed. This approach allows 

the readout to start earlier, in parallel with the exposure phase, thereby reducing 

significantly the time gap between exposure phases. This method utilizes a dual-port 

selection feature that allows for simultaneous exposure coding of certain pixel array rows 

while enabling readout for other rows [5]. 

In this work, we utilize masks of size 4x4, meaning that the readout of a specific set of 

rows initiates after every four subexposures. For instance, the first readout cycle will 

capture data from pixels in rows 0, 4, 8, and so on, while the second cycle will capture 

data from rows 1, 5, 9, …, and this pattern continues for N readout cycles until all rows 

are read, resulting in 16 subframes. Given that the full frame rate is 30 fps, the effective 

video capture rate from these subframes increases to 16 times that, or 480 fps. The 

sensor features a VGA-sized pixel array (640x480), meaning that the resolutions of the 

subframes will be divided by 4 during the tiling division, resulting in a final video output 

frame size of 160x120. 

 

Fig. 2. Overview of proposed continuous high-speed operation. The left part illustrates the 

masking using tiles to divide the pixel array into super-pixel units. The timing diagram 

demonstrates the modified dynamics allowing simultaneous exposure and readout, which 

makes the deadtime negligible. Source: adapted from [4]. 



Camera Firmware Implementation 

This section explores the implementation of a control system for the image sensor, 

utilizing an FPGA. The proposed camera firmware enables simultaneous exposure and 

readout leveraging the sensor’s dual-port row driver [5]. Central to this design are the 

finite state machines (FSMs) realized in Verilog HDL, which govern the operation of both 

exposure and readout phases. The focus of this implementation is to achieve 

simultaneous image capture, as outlined in the included timing diagram, thus facilitating 

the continuous acquisition of high-speed video footage. In this discussion, we will present 

the architecture of the FSMs.  

Figure 3 provides a simplified depiction of the state diagram for the FSM that controls the 

exposure process in the imaging system. This diagram illustrates the states and outputs. 

By default, it resets the photodiodes in preparation for the exposure phase.  The next 

state takes care of global exposure of the photodiodes. During this process, global shutter 

operations are employed, allowing simultaneous exposure of all pixels. It is followed by a 

meticulous row-wise scanning procedure that masks certain pixels within each row.  

Furthermore, at the conclusion of every four sub-exposures, the RO_start signal is 

asserted, instructing the readout module to proceed with reading the next set of rows. 

 

Fig. 3. State diagram of the FSM for exposure. It illustrates the sequence of states and outputs involved in 

resetting the photodiode, executing 16 sub-exposures using global shutter operations, and managing the 

transition from exposure to data acquisition via the RO_start signal. 

 

Figure 4 illustrates the state diagram for the FSM that controls the readout phase. It 

features a "wait" state, which keeps the readout block in standby mode until a RO_start 

signal is received from the exposure FSM. Upon receiving this signal, the FSM initiates 

the conversion phase, during which it reads the rows corresponding to the last four sub-



exposures performed. This approach ensures that each row is read immediately following 

its exposure. 

The conversion state is executed over 12 clock cycles, as this duration is necessary for 

the SAR ADC to convert the 12 bits of digital output. Once the conversion is complete, 

the S_OUTPUT state activates the output serializer, which transmits the converted bits 

generated by the ADC. 

The FSM must manage the sequence of row addresses carefully to align with the pattern 

established in the exposure mask. In this instance, a Bayer-like pattern of 4x4 tiles is 

employed in the sub-exposure masks, resulting in a row scanning step of 4. For example, 

the first set of rows to be read will include 0, 4, and 8, among others. After completing the 

first set, the FSM returns to the wait state, preparing for the next set of exposed rows. At 

this point, the ROW_OFFSET variable is incremented, allowing the subsequent set of 

rows to be read as 1, 5, 9, and so on, continuing until all rows have been processed. For 

a 4x4 tile, this means that four readout cycles are necessary to read all the rows. 

 

 

Fig. 4. State diagram of the FSM controlling the readout phase, illustrating the transition from the "wait" 

state to the conversion and output states, and detailing the sequential management of row addresses 

based on the Bayer-like 4x4 tile pattern. 

 

 

 

 



Software API development 

This subsection outlines the modifications made to the software API, particularly 

regarding the rearrangement of data during readout and the demosaicing algorithm for 

reshuffling compressed subframes. In this camera system, the Python programming 

language is utilized to develop software that controls camera operations, including the 

configuration of essential operating parameters, raw image acquisition, and subsequent 

post-processing of the obtained raw images.  

In the application examined in this work, Python scripts are also employed to generate 

Bayer-like pattern masks that define the subexposure operation, and for the demosaicing 

of the captured encoded images.  

The following code is utilized to create the subexposure masks, which are saved in a 

bitmap image file format. This bitmap file is read by the script responsible for 

communicating with the camera, which handles the transmission of data as a bitstream 

to the camera. The creation of the mask file is executed using the function 

create_tiled_stack to generate the numpy array for the mask, and the function 

save_to_bmp to produce a binarized bitmap file. 

def create_tiled_stack(height, width, tile_size): 

    num_layers = tile_size**2  # Total number of unique layers needed 

    # Initialize an empty list to hold each full-layer array 

    stacked_arrays = [] 

 

    # Create each layer by setting a "1" bit in the appropriate position within the tile 

    for layer in range(num_layers): 

        # Create a single tile-sized array 

        tile = np.zeros((tile_size, tile_size), dtype=np.uint8) 

 

        # Determine the position for the "1" bit within the tile 

        bit_y = layer // tile_size 

        bit_x = layer % tile_size 

        tile[bit_y, bit_x] = 1 

 

        # Replicate the tile to cover at least the desired height and width 

        layer_array = np.tile(tile, (height // tile_size + 1, width // tile_size + 1)) 

 

        # Crop the array to the exact desired dimensions 

        layer_array = layer_array[:height, :width] 

 

        # Add this full-layer array to the stack 

        stacked_arrays.append(layer_array) 

 

    # Stack all the layer arrays vertically 



    final_array = np.vstack(stacked_arrays) 

 

    return final_array 

 

def save_as_bmp(array, filename="burst_mask.bmp"): 

    # Convert to an image format (multiplying by 255 to make it binary: 0 and 255) 

    image = Image.fromarray(array * 255) 

    image = image.convert("1")  # Convert to 1-bit monochrome 

    image.save(filename, "BMP") 

 

 

# Create mask using created functions 

height = 480 

width = 1024 

tile_size = 4 

 

mask_array = create_tiled_stack(height, width, tile_size) 

 

filename = f"HS_mask_{tile_size}x{tile_size}.bmp" 

save_as_bmp(mask_array, filename) 

 

The camera API needed modifications to accommodate changes in the arrangement of 

readout data, as the pixel array rows are no longer read in sequential order. Previously, 

data for different rows was received sequentially. Consequently, adjustments in the code 

were necessary to adapt to the new row ordering. Below is a Python function used to 

generate a raw image with the correct row arrangement. 

def rearrange_deadtime(img, step=4): 

    height = img.shape[0] 

    width = img.shape[1] 

 

    img_rearranged = np.zeros((height, width)) 

    for offset in range(step): 

        img_rearranged[offset::(2*step), 0::2] = img[(offset*height//step):(offset*height//step + 

height//(2*step)), 0::2] 

        img_rearranged[(offset+step)::(2*step), 0::2] = img[(offset*height//step):(offset*height//step + 

height//(2*step)), 1::2] 

        img_rearranged[offset::(2*step), 1::2] = img[(offset*height//step + 

height//(2*step)):(offset*height//step + height//(step)), 0::2] 

        img_rearranged[(offset+step)::(2*step),1::2] = 

img[(offset*height//step+height//(2*step)):(offset*height//step+height//(step)), 1::2] 

    return img_rearranged 

 



 

The following Python function implements the demosaicing algorithm designed to 

reorganize pixel data into sequential subframes. This process utilizes the raw encoded 

image as input, along with the specified tile size corresponding to the Bayer-like mask. 

def reshuffle_deadtime(img, step=4): 

    tile_size = step 

    height = np.shape(img)[0] 

    width = np.shape(img)[1] 

    subimage_height = height // tile_size 

    subimage_width = width // tile_size 

 

    num_layers = tile_size**2  # Total number of unique layers needed 

 

    # Initialize an empty list to hold each full-layer array 

    imgs_reshuffled = [] 

 

    # Create each layer by setting a "1" bit in the appropriate position within the tile 

    for layer in range(num_layers): 

        # Create a single tile-sized array 

        tile = np.zeros((tile_size, tile_size), dtype=np.uint8) 

 

        # Determine the position for the "1" bit within the tile 

        bit_y = layer // tile_size 

        bit_x = layer % tile_size 

        tile[bit_y, bit_x] = 1 

 

        # Replicate the tile to cover at least the desired height and width 

        layer_array = np.tile(tile, (height // tile_size, width // tile_size)) 

 

        # Use the binary pattern as a mask to extract the subimage 

        subimage = img[layer_array == 1] 

 

        # Reshape the subimage into a 2D array for visualization 

        # To maintain visual proportions, compute the new dimensions 

        subimage_reshaped = subimage.reshape((subimage_height, subimage_width)) 

 

        imgs_reshuffled.append(subimage_reshaped) 

     

    return imgs_reshuffled 

 



Software development for video capture 

The following Python function is designed to perform post-processing of received raw 

images, specifically focusing on the calibration of black and bright levels.  

def image_scale_deadtime(image, black_img, bright_img, gain=False, black=True, dynamic=False, 

max_scale=3000, row = 480, col = 680, tab = 2): 

 

    row, col, tab = 480, 680, 2 

    max_val = 65535  # Equivalent to 2**16 - 1 

 

    if gain: 

        # Precompute bright_img and target medians 

        y2_left = np.median(bright_img[:, 30:col - 10]) 

        y2_right = np.median(bright_img[:, col + 30:2 * col - 10]) 

 

        # Create y2 array using broadcasting 

        y2 = np.zeros((row, col * tab)) 

        y2[:, :col] = y2_left 

        y2[:, col:] = y2_right 

 

        # Compute slope (m) and intercept (c) 

        median_x1 = np.median(black_img) 

        den = bright_img - black_img 

        den[den == 0] = np.inf  # Avoid divide-by-zero 

        m = (y2 - median_x1) / den 

        c = median_x1 - m * black_img 

 

        # Apply linear transformation and clip negative values 

        img = m * image + c 

        np.maximum(median_x1 - img, 0, out=img) 

 

    elif black: 

        # Black-level correction: Subtract and clip in-place 

        img = np.maximum(0, black_img - image) 

 

    elif dynamic: 

        # Dynamic range scaling 

        left_right = np.hstack((image[:, :col], image[:, col:])) 

        min_lvl = np.percentile(left_right, 10) 

        max_lvl = np.percentile(image, 90) 

 

        # Scale and clip dynamically 

        np.clip(image, min_lvl, max_lvl, out=image) 

        img = max_val - ((image - min_lvl) * max_val / (max_lvl - min_lvl)).astype(np.uint16, copy=False) 

        return img 



 

    else: 

        # Default: Use the image as-is 

        img = image 

 

    # Final scaling: Clip and normalize 

    img = np.minimum(img, max_scale)  # Equivalent to np.clip(img, 0, max_scale) 

    img *= max_val / max_scale 

    return img.astype(np.uint16, copy=False) 

 

Additionally, the following function addresses adjustments related to brightness, 

contrast, and gamma, enhancing the overall visual quality of the images. 

def adjust_img_deadtime(img, alpha, beta, gamma, black_level, bright_level):         

    # Rescale image intensity range to [0, 1] 

    final_frame_scaled = np.interp(img.astype(np.float32),[0, 65535],[0, 1]) 

 

    # Apply contrast and brightness adjustment 

    final_frame_scaled = final_frame_scaled*alpha + beta 

     

    # Apply gamma correction (optimize if gamma is integer) 

    if gamma != 1: 

        final_frame_scaled **= gamma 

     

    # Apply black and bright level adjustment 

    final_frame_scaled = np.interp(final_frame_scaled,[black_level,bright_level],[0,1]) 

 

    return final_frame_scaled 

 

Multithreading 

While the previously presented methods aim to reduce the deadtime in the image sensor 

to negligible levels between consecutive exposure phases, one challenge persists. The 

Python software that manages camera operations for both image acquisition and post-

processing introduces its delays, especially during the post-processing stage. To tackle 

this issue, we performed timing profiling on the Python code to pinpoint bottlenecks and 

subsequently restructured the code to facilitate multithreading. This allowed us to 

separate the image acquisition and buffering processes from the post-processing 

functions. Thus, aiming to achieve continuous live capture at a rate of 30 fps, aligned with 

the sensor's frame rate. 

Figure 5 demonstrates the reduction in frame period achieved through multithreading. In 

this configuration, Thread 0 handles the image readout and stores it in the buffer, while 



Thread 1 retrieves the image from the buffer, processes it, and displays the processed 

image on the screen. 

To maintain data integrity, we implemented a buffer lock, ensuring that only one thread 

can access the buffer at any given time. This prevents the accumulation of raw images 

from Thread 0 in the buffer, which can occur due to differences in processing speeds 

between the two threads. Such accumulation could result in delays in image projection 

on the screen. 

By leveraging multithreading, we can significantly reduce the total frame period, as 

illustrated in the figure. Under optimal conditions, where the readout and post-processing 

durations are equal, the total frame period can be reduced by as much as half. 

 

Fig. 5. Illustration of reduced frame period through multithreading, where Thread 0 manages image 

readout and buffering, while Thread 1 processes and displays the image. 

 

Following is the Python code for implementing the multithreading operation. 

# Start threads 

reader_thread = threading.Thread(target=image_reader, daemon=True) 

processor_thread = threading.Thread(target=image_processor, daemon=True) 

reader_thread.start() 

processor_thread.start() 

 

# Keep main thread alive 

try: 

    while reader_thread.is_alive() and processor_thread.is_alive(): 

        time.sleep(1) 

except KeyboardInterrupt: 

    print("Exiting...") 

    t7.close() 

    cv2.destroyAllWindows() 



Experimental Results 
For this experimental analysis, we chose an object that produces periodic rotational 

motion to effectively observe the sensor's behavior during its subexposures. Our objective 

is to validate the results obtained from full-frame transitions and analyze the implications 

of the remaining deadtime in the imaging process. 

Figure 7 illustrates the imaging outcomes for a single full frame. In Figure 7(a), the raw 

output, captured at 30 fps, exhibits distiguished artifacts in areas of motion due to the 

encoding with 16 subframes. Figure 7(b) presents the image after the application of the 

demosaicing algorithm, which integrates the 16 sequential images into a cohesive high-

speed sequence at 480 fps, effectively capturing the motion details. 

 

(a)                                                            (b) 

Fig. 7. Imaging outcomes for a single full frame. (a) Raw output at 30 fps showing artifacts in motion 

areas due to 16 subframe encoding. (b) Demosaiced image showcasing a cohesive high-speed sequence 

at 480 fps, effectively capturing detailed motion. 

 

To assess the impact of reducing deadtime during continuous video capture, we can 

compare consecutive full frames by analyzing the last subframe of one frame and the first 

subframe of the subsequent frame. Ideally, we aim for the motion displacement in active 

regions to correspond with the displacement observed in intra-frame transitions. 

Figure 8 presents the rearranged outputs from three sequential full frames, with a focus 

on the transition between the last subframe of one frame and the first subframe of the 

next. This analysis demonstrates that the motion displacement during these crucial 

moments mirrors that of intra-frame transitions, underscoring the effectiveness of 

reducing deadtime to maintain continuity in motion representation. 

 



 

Fig. 8. Analysis of transition between the last subframe of one frame and the first subframe of the next for 

3 consecutive frames, illustrating how reducing deadtime preserves motion continuity. 

 

Figure 9 illustrates the outcomes of the same experiment conducted using the old 

firmware, revealing a marked deadtime effect that significantly impacts performance. The 

moments of transition from one complete frame to the next are highlighted similarly to 

those in Figure 8, drawing attention to these critical intervals. In contrast to Figure 8, the 

old firmware exhibits a pronounced displacement following each frame reading, which 

hampers its effectiveness. While using this firmware produces adequate results for high-

speed burst imaging, it ultimately limits the sensor's application for continuous video 

capture. This is mainly due to the discontinuous nature of the video output, which risks 

losing visual information during the gaps between full frames. 



 

Fig. 9. Subframes captured for 3 consecutive frames using the old firmware, highlighting the significant 

deadtime effect and pronounced frame displacement that affects continuous video capture capability. 

 

Figures 8 and 9 offer valuable qualitative insights into the effects of reducing deadtime, 

but establishing a quantitative comparison is crucial for further analysis. We employed an 

oscilloscope to monitor control and output signals from the sensor, enabling us to 

accurately assess deadtime in both the current and previous firmware versions. 

Figure 10 demonstrates oscilloscope captures for the old firmware (a) and the new 

firmware (b). The new firmware clearly showcases the simultaneous operation of the 

readout and exposure phases, while the old firmware highlights that the duration of 

readout following exposure significantly contributes to deadtime, resulting in 17 

milliseconds between frames instead of the expected 2 milliseconds. 

In contrast, the new firmware reduces the additional wait time to just 1.8 milliseconds 

beyond the expected 2 milliseconds. 

 



 

(a) 

 

(b) 

Fig. 10. Comparison of oscilloscope captures for the old firmware (a) and new firmware (b). The new 

firmware demonstrates significantly reduced deadtime during the readout and exposure phases, 

achieving a 1.8 ms delay compared to the old firmware's 17 ms. 

 

 

Readout Phase: 
17.6ms deadtime 
between exposure  
phases. 

Exposure Phase: 
16 sequential 
subexposures. 

Exposure Phase: 
16 sequential 
subexposures. 

Readout Phase: 
4 readout cycles 
simultaneous with 
subexposures. 



Table 1 compares the delays of the previous and current systems, highlighting deadtime 

during sensor operation and software delays for raw image acquisition and post-

processing. Since these two software tasks run concurrently on the new implementation, 

the longer delay (post-processing) determines the total frame period. Improvements in 

minimizing delays have reduced the total frame period to under 33 ms, allowing the 

system to achieve 30 frames per second. 

 

Table 1. Comparative delay analysis. Unit is milliseconds. 

Item Previous Current Ratio 

Sensor deadtime 17.6 1.8 0.102 

Raw image acquisition 34.8 17.2 0.494 

Post-processing 57.5 30.5 0.530 

Total 109.9 32.3 0.294 

 

Conclusions 
The proposed system successfully addressed the challenges of simultaneous exposure 

and readout in coded-exposure imaging, showcasing significant advancements in 

reducing deadtime and improving continuous video capture capabilities. By leveraging 

innovative firmware modifications, optimized APIs, and multithreading, the system 

demonstrated substantial improvements in frame rates, spatial-temporal resolution, and 

motion representation. Experimental results highlighted a reduction in deadtime to nearly 

1.8 milliseconds, achieving seamless video continuity, as validated through oscilloscope 

measurements and quantitative comparisons with previous firmware. 

Future work could explore further optimizations, such as enhancing the scalability of the 

coded-exposure algorithm for more complex motion scenarios and implementing real-

time adaptive coding strategies. Additionally, integrating the system with machine learning 

models could improve its application in dynamic environments, such as real-time video 

resolution scaling using generative AI. 
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