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Residual Learning for Astronomical Images: A
PSF-Blind Approach to Deconvolution

Ali SaraerToosi, David Bromley, and Nhan Luong

Abstract—Reconstructing high-fidelity astronomical images from radio interferometric data is a critical challenge due to sparse UV
plane sampling, noise, and calibration errors. Traditional methods such as CLEAN and recent deep learning approaches like POLISH
rely on Point Spread Function (PSF) priors, which limits their adaptability to real-world scenarios where PSFs may be imprecisely
calibrated or highly variable. In this paper, we propose a novel modification to the POLISH pipeline that leverages residual learning to
address these challenges. By reframing the task as the prediction of residuals between the dirty and true sky images, the proposed
approach effectively decouples reconstruction from PSF priors, simplifying the learning problem and enabling robust deconvolution
under noisy and undersampled conditions. We evaluate our method, against the original POLISH model on simulated datasets with
and without PSF priors. Experimental results demonstrate that our model outperforms its counterpart in scenarios without PSF priors
while maintaining comparable performance when PSFs are available. Qualitative analysis reveals that the residual-based approach
mitigates visual artifacts, and improves the reconstruction of faint sources in noisy backgrounds. Our findings suggest that PSF-blind
residual learning is a promising direction for real-time interferometric imaging, especially in the context of next-generation instruments
like the DSA-2000. Code is available at: https://github.com/lennemo09/strong-lensing-polish-torch

Index Terms—Astronomy, Interferometry, Deconvolution, Denoising, Deep Learning, Residual Learning
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1 INTRODUCTION

Radio interferometry has revolutionized our ability to
observe the universe, offering high-resolution imaging of ce-
lestial phenomena by synthesizing signals from distributed
arrays of antennas. This technique is a cornerstone of
modern astronomy, enabling the study of faint and dis-
tant objects, as well as transient events across the electro-
magnetic spectrum. However, the imaging process presents
unique challenges due to the inherent sparsity of UV plane
sampling, noise, calibration errors, and the computational
demands of processing large datasets. These limitations
are becoming more pronounced with next-generation in-
terferometers such as the DSA-2000, which operates at an
unprecedented scale, producing 10 TB of data per second.
The need for real-time, high-fidelity image reconstruction
has thus emerged as a critical bottleneck. Furthermore, the
wide dynamic range of astronomical images, as shown in
Fig. 1, poses additional difficulties, as faint sources must be
distinguished from bright ones without loss of fidelity.

Traditional algorithms, such as CLEAN [1], [2], itera-
tively deconvolve the instrumental Point Spread Function
(PSF) to reconstruct sky images. While effective, these meth-
ods are computationally intensive and sensitive to PSF inac-
curacies, especially in wideband and dynamic observational
regimes. Furthermore, CLEAN and its derivatives often fail
to fully recover faint sources embedded in noise or artifacts
caused by incomplete UV coverage. Recent advances in ma-
chine learning have introduced deep learning-based solu-
tions, such as POLISH, which leverage convolutional neural
networks (CNNs) to achieve fast, feed-forward image recon-
struction. By incorporating the PSF as a prior, POLISH sig-
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Fig. 1: An example of the pixel distribution of a simu-
lated true sky image without noise. The pixel distribution
presents a problem of very high dynamic range, where both
very faint sources and very bright sources can be present in
the image.

nificantly reduces computational costs and offers improved
angular resolution. However, its reliance on pre-calibrated
PSFs limits its robustness to real-world conditions, where
the PSF may be distorted or poorly characterized.

To address these limitations, we propose a novel modifi-
cation to the POLISH pipeline [3] by incorporating residual
learning. Unlike direct sky reconstruction methods, residual
learning shifts the focus to predicting the residual—the dif-
ference between the dirty and true sky images. This refram-
ing simplifies the learning task and reduces dependence
on explicit PSF priors. The proposed method inherently ac-
counts for PSF variations and noise effects without requiring
detailed PSF calibration, making it robust to instrumental
errors and environmental disturbances.

This work introduces our modification to POLISH, de-
tailing its theoretical foundation, implementation, and per-
formance evaluation. We present a comprehensive analysis
of its performance compared to the original POLISH model,
using synthetic datasets with and without PSF priors. Ex-

https://github.com/lennemo09/strong-lensing-polish-torch
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perimental results demonstrate that our model not only
matches but can also exceeds the performance of the original
model, especially in PSF-blind scenarios.

2 BACKGROUND

2.1 Radio Interferometry

Radio interferometry combines signals from arrays of an-
tennas to observe celestial objects at radio wavelengths,
achieving resolutions equivalent to a telescope as large as
the array’s maximum baseline. This involves measuring
spatial frequency data, known as visibilities (V (u, v)), which
represent the Fourier transform of the sky brightness distri-
bution I(l,m):

V (u, v) =

∫∫
I(l,m)e−2πi(ul+vm) dl dm. (1)

The goal is to reconstruct I(l,m) by inverting the Fourier
measurements, but challenges arise due to sparse sampling
of the UV plane (determined by the baselines between
antennas), noise, calibration errors, and the computational
demands of processing massive data volumes. An illus-
tration of this relationship between the Fourier and image
domain can be found in the Supplementary section.

Modern interferometric pipelines also leverage dis-
tributed computing and GPUs to handle the computational
demands of calibration and imaging. Recent innovations,
such as neural interferometry, explore the direct reconstruc-
tion of visibility data in the Fourier domain using machine
learning, bypassing the need for explicit PSF deconvolution.
These developments highlight the growing role of data-
driven techniques in radio astronomy, promising greater
scalability and accuracy for next-generation instruments.

One such instrument system, DSA-2000, with 2000 fixed
antennas spread over a an area of 15 km in diameter,
addresses these challenges with its dense baseline coverage,
offering a spatial resolution of 3.5 arcseconds and a wide
field of view. However, gaps in UV coverage still intro-
duce artifacts in images, and wideband observations com-
plicate reconstruction due to frequency-dependent effects.
Advanced algorithms, such as CLEAN and neural fields, are
used to mitigate these issues by interpolating the missing
UV data and improving image fidelity. Additionally, the
computational demands of processing large datasets require
distributed computing, GPUs, and machine learning for
real-time calibration and imaging. These innovations will
enable DSA-2000 to produce high-fidelity images of galax-
ies, transient events, and black hole environments.

2.2 Synthetic Sky Model and Data Generation

The image model and generation procedure is established
by Connor et al. for POLISH [3], which produces realistic
input-output pairs comprising high-resolution true sky im-
ages and degraded, low-resolution dirty images that emu-
late the measurements of an interferometric array. We also
explored generating an equivalent data set in the Fourier
domain by artificially generating our own UV baselines
and calculating the PSF, however due to limited publicly
available information we were unable to perfectly reproduce
the DSA-2000 full band PSF used by POLISH, thus we opted

to include this process in the supplementary material. In our
work, the resolution disparity is not taken into account, thus
the image pair have the same resolution. We also introduced
the residual for training, which we argue simplifies the
learning problem which help improve the signal reconstruc-
tion. This section details the key models, intuition behind
the data modelling, and the implementation specifics used
to generate a dataset of 800 training triplets, 100 validation
triplets, and 200 test triplets.

2.2.1 Synthetic True Sky Images
The true images represent the intrinsic sky brightness distri-
bution, consisting of synthetic galaxy sources whose proper-
ties are modeled from observational statistics. These images
serves as the ground truth for the model. For our work, the
true sky images generated are 1024× 1024 pixels in size.

Spatial and Flux Distribution
The number of sources per image is sampled from a Poisson
distribution, with the expected mean calculated as:

Nsrc = ρsrc ×
Aimage

36002
,

where ρsrc is the source density in sources per square
degree, and Aimage is the image area in square arcminutes.

Flux densities S of individual sources are drawn from a
broken power-law distribution:

P (S) ∝
{
S− 2

3 , if S > Sthreshold

S−1, if S ≤ Sthreshold

where Sthreshold defines the flux value at which the power-
law behavior transitions between the two regimes. This
distribution accounts for the abundance of faint sources
while modeling the sparser distribution of bright sources.

Source Shapes
Galaxy shapes are modeled as two-dimensional Gaussian
ellipsoids, with their parameters derived from empirical
distributions:

Semi-major axis (σx): The semi-major axis is sampled
from a gamma distribution:

σx ∼ Γ(k, θ),

where k is the shape parameter and θ is the scale parameter
of the gamma distribution1.

Ellipticity (e): The ellipticity, defined as

e =
a− b

a+ b
,

is drawn from a beta distribution. Here, a and b represent
the semi-major and semi-minor axes of the ellipse, respec-
tively.

Semi-minor axis (σy): The semi-minor axis is derived
from the semi-major axis and ellipticity using:

σy = σx

√
1− e

1 + e
.

Orientation angle (θ): The orientation angle of the ellipse
is uniformly distributed between −90◦ and 90◦.

1. https://en.wikipedia.org/wiki/Gamma distribution

https://en.wikipedia.org/wiki/Gamma_distribution
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Gaussian brightness profile: The brightness distribution
of a galaxy is modeled as:

G(x, y) = A exp

(
−1

2

[
x′ y′

]
Σ−1

[
x′

y′

])
,

where
[
x′

y′

]
are coordinates rotated by the angle θ, and Σ is

the covariance matrix:

Σ =

[
σ2
x ρσxσy

ρσxσy σ2
y

]
.

The parameter ρ represents the correlation coefficient, which
is set to zero in these simulations, assuming no correlation
between axes.

Gravitational lensing
A subset of galaxies is modeled as gravitationally lensed
sources to simulate the distortions caused by massive fore-
ground objects. A more thorough description of the lensing
model is present in the Supplementary section.

The addition of gravitational lensing provides in the
training data aims to provide a realistic representation of
gravitationally distorted sources, which are essential for the
neural network to be able to deconvolve in practice with
real sky images.

2.2.2 Synthetic Dirty Images
In principle, the true sky images are degraded by the in-
strumental response of the radio interferometer to generate
dirty images. This degradation process includes convolution
with the PSF and subsequent downsampling to match the
resolution of the synthesized beam.

Point Spread Function (PSF): The PSF is derived from
the Fourier transform of the telescope’s sampling function
S(u, v), where (u, v) are spatial frequency coordinates sam-
pled by the array:

PSF(x, y) = F−1{S(u, v)}.

In POLISH, variations in the PSF are introduced to account
for errors in instrumental calibration and measurement:

• Ideal PSF: Derived directly from the array layout
and observing parameters.

• Distorted PSF: Elastic transformations are applied
to the PSF to simulate calibration errors, ionospheric
effects, or asymmetries due to sparse sampling.

For our purpose, we only account for the ideal PSF from the
DSA-2000 using fullband 1.3GHz, which is readily provided
with the POLISH code2. Distortion to the PSF is planned for
further work.

Noise: Gaussian noise is added to the true sky image to
simulate thermal noise and other measurement errors:

Inoisy(x, y) = Isky(x, y) + η(x, y),

where η(x, y) ∼ N (0, σ2).
The noise level σ is set based on the expected signal-to-

noise ratio (SNR) of the instrument. In POLISH and in our
work, σ = 5 is chosen for the noise.

2. https://github.com/liamconnor/polish-
torch/blob/main/psf/dsa-2000-fullband-psf.fits

Fig. 2: An example of a a dirty image generated using the
true sky convolved with the provided fullband DSA-2000
PSF. The true sky image and dirty image pixel values are
clipped and the PSF is displayed in log scale for visualiza-
tion only.

Degradation: Each noisy sky image Inoisy(x, y) is con-
volved with the PSF k(x, y):

Idirty(x, y) = Inoisy(x, y)⊛ k(x, y), (2)

where ⊛ denotes the convolution operation.
In practice, the convolution is performed in the Fourier

domain:
F(Idirty) = F(Inoisy) · F(k).

Downsampling: In POLISH, downsampling is applied
to the convolved image to form a low-resolution dirty im-
age. After convolution, the dirty image is downsampled by
a factor r to match the effective resolution of the synthesized
beam:

Idownsampled(x, y) = Idirty(r · x, r · y).

Bilinear interpolation is used to avoid aliasing during the
downsampling process.

In our work, we are focused on reconstructing the resid-
ual which contains the convolved noise, thus upsampling
the network output is not a desirable operation. Hence,
we opted to not utilize the upsampling functionality of
the POLISH network and select r = 1 for dirty images
generation. An example of the dirty image generation is
shown in Fig. 2.

2.2.3 Residual Images
The residual image captures the difference between the
true sky and the dirty image, providing a measure of the
artifacts and distortions introduced by the instrument’s PSF
and noise. The residual is computed as part of the data
generation process and serves as an alternative to compute
the true sky reconstruction. It is important to note that the
residual is computed from the normalized true-dirty pair,
the pixel range of the residual image is [−1, 1], which is not
normalized during training and validation.

Definition of the Residual: The residual image R(x, y)
is defined as the pixel-wise difference between the PSF-
convolved true sky image (dirty image) Idirty(x, y) and the
original high-resolution sky image Isky(x, y):

R(x, y) = Idirty(x, y)− Isky(x, y). (3)

3 RELATED WORK

Connor et al. introduced POLISH [3], a deep learning-based
method for deconvolution and super-resolution of DSA-
2000 measurements. POLISH utilizes the WDSR architecture

https://github.com/liamconnor/polish-torch/blob/main/psf/dsa-2000-fullband-psf.fits
https://github.com/liamconnor/polish-torch/blob/main/psf/dsa-2000-fullband-psf.fits
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Fig. 3: The POLISH architecture proposed by Connor et al.
based on the WDSR architecture by Fan et al. [4].

[4] to reconstruct high-resolution sky images from low-
quality dirty images. By leveraging a pre-calibrated PSF as a
physics-informed prior, it achieves high angular resolution
and effective super-resolution, distinguishing sources below
the scale of the PSF’s corruption. However, this dependence
on pre-calibrated PSFs limits its adaptability to real-world
scenarios where the PSF may be imperfectly known or
exhibit significant variations.

Denoising CNNs (DnCNN) have also demonstrated
strong performance in residual learning for noise reduction
[5], [6]. These methods operate by learning a mapping
from noisy images to their noise components, effectively
separating noise from the underlying signal. While suc-
cessful in other domains such as medical imaging and
microscopy, their potential for interferometric image re-
construction—particularly in deconvolution tasks with un-
known PSFs—has not been fully explored. Zhang et al.
[5] highlight the flexibility of residual learning in general
denoising tasks but do not address its application to inter-
ferometric image recovery.

Building on these foundations, our work introduces
residual learning to interferometric image reconstruction.
While POLISH directly reconstructs the sky image utilizing
a known PSF prior, or a distribution of PSFs as a prior, we
reformulate the task as the prediction of residuals between
the dirty image and the true sky. This reframing simplifies
the learning process, reduces reliance on explicit PSF priors,
and improves robustness to calibration errors.

By incorporating the strengths of both POLISH and
DnCNN, our approach maintains the speed of feed-forward
methods while addressing the challenges posed by un-
known or inaccurate PSFs. This combination allows for
accurate reconstructions in scenarios where PSF priors are
unavailable or unreliable, making our method better suited
for practical, real-world interferometric data.

4 PROPOSED METHOD

The proposed method introduces a modification to the POL-
ISH pipeline by transitioning from direct sky reconstruction
to residual learning which mitigates the need for a PSF prior
as an input. Here, we describe the intuition, mathematical
framework, network architecture, and implementation de-
tails of the proposed method in detail.

In essence, the residual image quantifies the extent to
which the PSF and noise degrade the original signal, high-
lighting errors and artifacts introduced during observation.

Fig. 4: Top: Standard POLISH procedure: Given as input
a dirty image and PSF(s), the network outputs an decon-
volved true sky image. Bottom: Our proposed alteration to
the POLISH training procedure: the network learns to map
the dirty image Id to a predicted residual R̂ which should
approximate the ground truth residual R∗ which can the be
used to reconstruct the approximated sky image Î .

Based on the definition of the dirty image from Eq. 2, we
can rearrange the terms to get:

R(x, y) = Isky(x, y)⊛ k(x, y)− Isky(x, y)+ η(x, y)⊛ k(x, y).
(4)

This shows that by making the network learn to recon-
struct the residual, the model also learns a deep representa-
tion of the true sky. Thus, we hypothesize that this learning
process is a simpler task than producing the true sky at the
last layer, which can help reduce the reliance on a given PSF
prior. Our modification to POLISH is illustrated in Fig. 4.

Intuitively, this is because the distance between the resid-
ual and the dirty image is much closer than the distance
between the true sky image and the dirty image, as the
convolved noise along with the sampling noise from the
PSF make up the majority of the pixel differences between
the true sky and the dirty image. Fig. 5 shows that denois-
ing task is simple for the model to learn as it only need
to construct a near-identical version the dirty image. The
harder task is to recover the galaxies, which is equivalent to
learning to place the divots (circled in red) accurately in the
constructed noise background.

A natural derivation of this can also be seen from the
mean squared error (MSE) loss between the true sky Is and
the reconstructed sky:

LI =
1

N

N∑
i

(
I(i)s − Î(i)

)2

This is equivalent to the MSE loss between the recon-
structed residual and the ground truth residual if we use
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TABLE 1: Performance comparison of POLISH and POLISH Residual models with and without PSF. The numbers reported
are the mean ± standard deviation over the test set of 200 samples.

Metric POLISH (PSF) POLISH Residual (PSF) POLISH (No PSF) POLISH Residual (No PSF)
SSIM 0.31661± 0.26165 0.42376± 0.24384 0.26295± 0.21049 0.44731± 0.25399
MSE 0.00090± 0.00137 0.00034± 0.00051 0.00155± 0.00332 0.00030± 0.00050

PSNR 34.87310± 6.70634 37.92690± 5.39336 33.24559± 6.52640 38.56120± 5.57084

Î = Id − R̂:

LR =
1

N

N∑
i

(
R∗(i)

− R̂(i)
)2

=
1

N

N∑
i

(
I(i)s − (I

(i)
d − R̂(i))

)2
= LR′

Then, we have the new loss functions that can be used to
direct the network towards learning to compute the residual
image from the dirty image.

In practice, while both loss functions would guide the
model to learn the residuals, using LR as the loss function
only requires loading the residual and dirty images onto
memory, while using LI as the loss function requires load-
ing the residual, dirty, and the true sky images onto memory
which requires the use of a smaller batch size for training.

Another key difference is while POLISH originally found
MAE loss to give faster convergence during training, our
experiments showed that using MSE loss leads to more
stable training faster convergence with our setup for both
methods using our setup and training configurations, thus
we decided to use MSE loss for all of our training runs.

5 EXPERIMENTAL RESULTS

5.1 Setup and Implementation Details

Our implementation uses a fork of the polish-torch
repo 3. The resulting dataset used for training consists of
true-dirty-residual images triplets, where the training set
contains 800 triplets, the validation set contains 100 triplets,
and the test set contains 200 triplets.

For experiments, we trained the POLISH model with
and without the given PSF prior for both residual recon-
struction task and sky reconstruction task. For comparison
purposes, we used r = 1 for no super-resolution in the
upsampling layer. The input images are 1024 × 1024 pixels
with a RandomCrop size of 512 × 512 to avoid overfitting.
For the optimization algorithm, we used Adam which is
a standard choice also used by POLISH, but we changed
the learning rate scheduler to ReduceLROnPlateau which
shown benefit to later epochs.

All experiments were conducted on an NVIDIA RTX
TITAN GPU with 24 GB VRAM and trained for 160 epochs.
While we would have preferred to extend the training
period, time constraints prevented us from doing so. Never-
theless, we observed that the models reached a plateau after
80 epochs, suggesting that additional training would likely
result in only marginal gains.

Fig. 5: An example of a reconstructed true sky using the
predicted residual. Highlighted are some of the galaxies of
interest, most which the model manages to recover. Note
that the model also produces very faint artifacts from small
differences between the residuals, which may be counted as
false positive galaxies. This occasionally occurs in regions
with signals very close to, or under the noise floor.

5.2 Results and Discussion

Comparison with Standard POLISH

Table 1 shows the quantitative performance of the models
on 3 metrics also used by POLISH: Structural Similarity In-
dex Measure (SSIM), Mean Squared Error (MSE), and Peak
Signal-to-Noise Ratio (PSNR). Both methods are evaluated
with and without the PSF as an additional input channel,
providing insight into the role of residual learning and the
necessity of PSF priors.

The results shows that vanilla POLISH performs signif-
icantly better given a PSF prior across all metrics. When
using residual learning, the performance is slightly better
without a given PSF prior with a small margin. The distri-
bution of the metrics results are provided in the Supplemen-
tary section.

In addition to quantitative metrics, the image outputs
from the models provide insights into the deconvolution
artifacts and differences in reconstruction quality. For a more
detailed comparison, we examined the output images from
all models under both PSF configurations. Representative
samples are illustrated in Fig. 6.

A recurring artifact, resembling an airy disk, is observed
in the reconstructions from models incorporating PSF priors.
This consistent artifact appears as a faint concentric circu-
lar structure centered within the image field. The feature
is more pronounced in the standard POLISH model and
appears as a subtle ”darkened” region in the residual-based
POLISH Residual model. These artifacts are less noticeable
when the PSF prior is removed (Fig. 6.b and Fig. 6.c).

Due to the consistent appearance and position, we hy-
pothesize that this artifact potentially arises as a side effect
of how the PSF is modeled and applied in the WDSR
block, and from the global skip connection of the POLISH
architecture. While faint, this artifact could interfere with
the detection of low-flux sources located at the center of
the field, especially when interpreting images with a faint

3. https://github.com/liamconnor/polish-torch/

https://github.com/liamconnor/polish-torch/
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Fig. 6: Comparison of image reconstruction quality from the models tested. For each subplot: First row: the entire image
plane; Second row: the cropped region highlighted and the color scale corresponds to the normalized cropped region;
Third row: the cropped region with gamma correction γ = 2.2 for visualization. For each subplot, the columns from left to
right are: Dirty image, POLISH PSF, POLISH Residual PSF, POLISH No PSF, POLISH Residual No PSF, Ground Truth.

Fig. 7: Comparison of CLEAN versus learned methods.
First row: The entire image plane. Second row: the cropped
region highlighted and the color scale corresponds to the
normalized cropped region. Third row: cropped region with
gamma correction γ = 2.2 for visualization. The columns
from left to right are: Dirty image, CLEAN, POLISH PSF,
POLISH Residual No PSF, Ground Truth.

galaxy near the center (Fig. 6.b). A closer investigation to
understand the cause of this artifact is desirable.

Across the samples, models trained with a PSF
prior exhibit similar qualitative outputs. However, POL-
ISH Residual demonstrates a more robust handling of noisy
regions, avoiding over-amplification of residual noise. In-
terestingly, in configurations without the PSF prior, POL-
ISH Residual produces visually cleaner results compared
to POLISH Residual with the PSF. This is evident in Fig.
6.e, where faint sources and structural details are recovered
with minimal interference from background noise.

The absence of PSF priors in the residual-based model
leads to outputs that closely align with those from PSF-
enabled models but without the central artifact. This sug-
gests that the residual-based approach is able to implicitly

captures essential image corrections without requiring ex-
plicit knowledge of the PSF due to the simpler learning task.

Additionally, we would also want to use the domain-
standard procedure of detecting galaxies in an image using
SNR threshold of 5σ in a given subregion of the image.
However, this process is non-trivial when the galaxy distri-
bution is non-uniformly spaced apart, and the size of each
galaxy can vary greatly. This causes a challenge in finding
the correct window size for detection with SNR threshold.
We proposed a procedure to adapt this procedure to our
dataset in the Supplementary section.

Comparison with CLEAN

CLEAN is an useful baseline to compare against as it is the
domain-standard method for interferometry image recon-
struction. POLISH have been shown to outperform CLEAN
in deconvolution tasks [3]. Here, we want to briefly compare
against CLEAN performance, especially in terms of speed
as well. While there is no off-the-shelf implementation for
CLEAN, the algorithm is straightforward enough for us
to re-implement. The details of which are discussed in the
Supplementary section.

Table 2 shows that quantitatively, CLEAN is significantly
better at reconstruction the true sky image. However, this
is due to the specific caveat of these metrics for our data.
Because the true sky image is noise-free, with a lot of
very faint signals very close to zero, and most pixels are
zero, the metrics are biased towards images with low noise
background. Fig. 7 shows that even though the quantitative
metrics favor CLEAN’s output, we can observe that the
reconstructed image from CLEAN is not desirable as it
struggles with removing the noise entirely, even though
the average noise background is lower. More comparison
examples are included in the Supplementary section.

Regarding the time taken to process an image, CLEAN
takes on average 2.77 seconds while the feed-forward meth-
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TABLE 2: Performance of CLEAN algorithm on the test set
with maximum 1000 iterations for each sample.

Metric CLEAN
SSIM 0.94339± 0.06141
MSE 0.00022± 0.00016

PSNR 37.30026± 2.36678
Time (s) 2.77214± 0.28830

ods take on average 0.006 seconds. This results in a typical
speed-up of 500 times on the same system configuration.

An additional downside of CLEAN is the need to man-
ually adjust the parameters of each image to achieve the
best results. A specific threshold value for one image is not
suitable for another. To apply CLEAN to a batch of images,
where some contain only near-zero signals, an unsuitable
threshold value would result in the algorithm stopping early
and returning a faulty output image. But since many of the
galaxies are near noise level, automatically determining a
good threshold value is not straightforward.

6 CONCLUSION

We introduced a PSF-blind residual learning framework
for reconstructing astronomical images from interferometric
data. By reframing the task from direct image reconstruction
to residual prediction, we demonstrated improved robust-
ness to calibration errors and reduced dependence on ex-
plicit PSF priors. Our approach simplifies the complex task
of deconvolution into a more manageable residual learning
problem, enabling faster convergence during training and
improved reconstruction fidelity in challenging conditions.

Experimental results confirm that our residual-based
method outperforms traditional POLISH, particularly in
scenarios without a known PSF. Moreover, we showed that
our framework generalizes to varying levels of noise and
image complexity as well as standard POLISH, producing
high-fidelity reconstructions with fewer artifacts.

From a practical standpoint, the lack of reliance on a PSF
prior and the absence of the central artifact demonstrates the
to perform better deconvolution with the POLISH Residual
model. The model’s ability to decompose the residual signal
without direct dependence on the PSF demonstrates the
viability of our proposed approach for real-world noisy and
undersampled interferometric data.

Future work will explore decoupling the deblurring
and denoising tasks into separate networks4, potentially
introducing a third stage network for super-resolution to
match the capability presented by POLISH. Models such as
[6] present a potential avenue for an improved architecture
capable facilitating this modularity. This modular approach
could further enhance the robustness and accuracy of the
reconstruction pipeline, paving the way for scalable, real-
time processing in next-generation instruments like DSA-
2000.
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SUPPLEMENTARY

Illustration of Radio Interferometry Image-UV Relation-
ship

Fig. 8: Figure from Radio Astronomy: Lecture 6 by Prof.
Dale E. Gary (Link). a) An example (model) sky map. d) The
corresponding visibilities (Fourier Transform of the map). c)
The synthesized beam, or point-spread-function, of a model
antenna array. e) The sampling function of the array, whose
Fourier Transform gives the beam in (b). f) The product
of panels (d) and (e), representing the sampled visibilities.
These are the actual measurements from the array. c) The
dirty map that results from the Fourier Transform of the
sampled visibilities. This is the same as the convolution of
the map in (a) and the synthesized beam in (b).

PSF Generation From Simulated UV Baselines
Here, we describe the methodology for generating synthetic
PSFs from simulated UV baselines, which had been omitted
from the main writing due to missing key information to
perfectly accurately recreate the DSA-2000 UV mask and
PSF.

UV Baseline Simulation
The UV plane represents the spatial frequency coverage
of an interferometric array. The baselines between pairs
of antennas define the sampled spatial frequencies. For an
array with N antennas, the baselines bij are calculated as:

bij = rj − ri = (xj − xi, yj − yi),

where ri = (xi, yi) is the position of the i-th antenna.
The corresponding UV coordinates, scaled by the observing
wavelength λ, are:

(u, v) =
bij

λ
.

UV Mask Generation
The UV coverage is discretized onto a Fourier grid of size
Nx ×Ny , corresponding to the desired image resolution. A
binary UV mask M(u, v) is created by marking grid points
sampled by the baselines:

M(u, v) =

{
1, if (u, v) within the sampled UV coordinates,
0, otherwise.

Conjugate symmetry is enforced by adding points (−u,−v)
for each (u, v):

M(−u,−v) = M(u, v).

PSF Computation

The PSF is derived as the inverse Fourier transform of the
UV mask:

PSF(x, y) = F−1 (M(u, v)) ,

where F−1 denotes the 2D inverse Fourier transform. Zero-
padding is applied to M(u, v) to increase the spatial resolu-
tion of the resulting PSF.

Optimizations

As we needed to compute the sampled FFT of hundreds
of images given thousands of baselines, a faster method
to achieve this is implemented. Here, we describe the op-
timization steps that we implemented to generate the dirty
images.

Precomputed UV masks: Instead of recalculating the UV
coordinates for each image, a binary UV mask M(u, v) is
precomputed and stored. Sampling the Fourier transform of
an image F (I) can then be performed as:

Fsampled(u, v) = F (I)(u, v) ·M(u, v),

where M(u, v) is a binary mask. This approach eliminates
the need for point-wise mapping of many thousands of UV
coordinates onto the Fourier grid for each image.

Binary mask: Using a binary UV mask M(u, v) ∈ {0, 1}
is computationally advantageous compared to a weighted
mask W (u, v). In the binary case, the non-zero indices of
M(u, v) are extracted:

I = {(u, v) | M(u, v) = 1}.

Sampling reduces to indexing the Fourier-transformed im-
age:

Fsampled(u, v) = F (I)(u, v), ∀(u, v) ∈ I.

This avoids element-wise multiplications across the full
grid, which would be required for weighted masks.

Vectorized baseline calculations: The baselines bij are
computed for all antenna pairs using vectorized operations:

b = vec(r)⊗ vec(r),

where vec(r) represents the antenna positions as a vector.
This helps scale efficiently with large arrays.

Precomputed mask indices: For repeated FFT opera-
tions, the UV mask indices I are precomputed once. Ap-
plying the mask becomes:

Fmasked(u, v) =

{
F (I)(u, v), (u, v) ∈ I,
0, otherwise.

Batch processing: Batch processing of images is imple-
mented using parallelization. For B batches, the sampled
Fourier transforms are computed concurrently:

F
(b)
sampled(u, v) = F (b)(I)(u, v) ·M(u, v), ∀b ∈ {1, . . . , B}.

https://web.njit.edu/~gary/728/Lecture6.html
https://web.njit.edu/~gary/728/Lecture6.html
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Fig. 9: Distribution of metrics results between methods on the validation set.

Gravitational Lensing
Deflection angles (αx, αy): The deflection angles induced
by the lens are calculated as:

αx =
θEx√
x2 + y2

, αy =
θEy√
x2 + y2

,

where x and y are the coordinates of the source relative to
the lens center, and θE is the Einstein radius, defined as:

θE =

√
4GM

c2
Dls

DlDs
.

Here, M is the lens mass, G is the gravitational constant, c
is the speed of light, and Dl, Ds, and Dls are the angular
diameter distances to the lens, the source, and between the
lens and source, respectively.

Lensed image coordinates: The lens equation relates the
apparent (lensed) position of the source (x, y) to its true
(unlensed) position (βx, βy) through the deflection angles:

βx = x− αx, βy = y − αy.

Lensed brightness profile: The brightness distribution of
the lensed source is mapped from the intrinsic source profile
by applying the lens equation to distort the coordinates. For
a Gaussian source:

Glensed(x, y) = A exp

(
−1

2

[
x′ y′

]
Σ−1

[
x′

y′

])
,

where x′ and y′ are transformed according to the lens
equation.

Einstein ring formation: For symmetric configurations
where the source lies directly behind the lens, the lensed
image forms a complete Einstein ring with a radius ap-
proximately equal to θE . In asymmetric cases, partial arcs
or multiple lensed images are produced. Einstein radii (θE)
are drawn from a uniform distribution in a physically rea-
sonable range, e.g., [0.025, 0.3] arcseconds. Source positions
(βx, βy) relative to the lens center are randomly sampled
within the image field.

Domain-Standard Detection Process Using SNR Thresh-
olds in Astronomy
In astronomical imaging, detecting faint galaxies and other
celestial sources often relies on identifying regions with

a signal-to-noise ratio (SNR) above a specific threshold,
typically set at 5σ. This threshold ensures that detections
are statistically significant and minimizes false positives
due to noise fluctuations. Below, we outline the steps for
implementing this detection process, including determining
the appropriate window size for galaxy detection and chal-
lenges associated with the method.

Definition of σ for a Patch

The σ value for a given patch is the standard deviation of
the noise in that region. To compute σ:

1) Identify noise-only regions: Choose patches of the
image that are unlikely to contain any sources (e.g.,
background regions away from bright sources).

2) Measure standard deviation: Compute the stan-
dard deviation (σ) of pixel intensities within these
regions. This σ represents the background noise
level for the image.

For a patch P of size N ×N pixels:

σP =

√∑
i,j∈P (Ii,j − ĪP )2

N2
,

where Ii,j is the intensity of the pixel at (i, j) in the patch,
and ĪP is the mean intensity of the patch.

Calculating SNR for a Patch

The SNR for a patch is the ratio of the signal intensity to the
noise standard deviation. For a patch P :

SNRP =
SignalP

σP
.

• Signal (SignalP ): Defined as the sum or maximum
of the pixel intensities within the patch, depending
on the detection strategy.

• Noise (σP ): Standard deviation of the noise in the
patch, as calculated above.

For significant detections, the patch must satisfy:

SNRP ≥ 5.
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Fig. 10: Comparison of CLEAN versus learned methods. First row: The entire image plane. Second row: the cropped
region highlighted and the color scale corresponds to the normalized cropped region. Third row: cropped region with
gamma correction γ = 2.2 for visualization. The columns from left to right are: Dirty image, CLEAN, POLISH PSF,
POLISH Residual No PSF, Ground Truth.

Challenges in Choosing the Patch Size

A critical aspect of this detection process is selecting an
appropriate patch (or window) size. If the window size is
too small, it may capture only part of a galaxy, reducing
the SNR. Conversely, if the window size is too large, it may
include noise or multiple sources, complicating detection.

Estimate the number of sources: Use the Poisson distri-
bution to sample the number of sources in the image:

nsrc ∼ Poisson(ρsrc ×Aimage),

where:

• ρsrc is the source density in sources per square ar-
cminute,

• Aimage is the image area in square arcminutes.

textbfWindow size:

• Start with a window size that is expected to contain,
on average, one galaxy based on the source density
and image resolution.

• For a pixel size of PIXEL SIZE arcminutes and an
Nx ×Ny pixel grid:

Apatch = N2
patch × PIXEL SIZE2,

where Npatch is the side length of the patch in pixels.

Noise distribution: Slide the window across the image,
compute the standard deviation (σ) for each patch, and
examine the histogram of σ values.

For a well-chosen window size, patches containing noise
should cluster around a single σ value, while those contain-
ing galaxies should form a distinct higher-SNR tail in the
histogram.

Optimizing Window Size Through Simulations

Given the source density and the hypothesis that galaxies
are randomly distributed.

Calculate expected noise-only patches: The number of
patches containing only noise can be estimated by:

nnoise = npatches − nsrc,

where npatches is the total number of patches for the chosen
window size.

Analyze distribution of σ: Generate a histogram of the
standard deviations (σ) over all patches.

• Patches with only noise will contribute to a peak
around the background noise level.

• Patches containing galaxies will form a tail or sec-
ondary peak at higher σ values.

By tweaking the window size, the goal is to maximize
the separation between noise-only patches and those con-
taining galaxies in the histogram. The optimal window size
balances detection sensitivity and computational efficiency.

Once an optimal window size is determined:

1) Slide the window across the entire image and calcu-
late the SNR for each patch.
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2) Identify patches where SNR ≥ 5 as potential galaxy
detections.

3) Validate detections by visually inspecting candidate
regions or cross-referencing with known catalog
data.

This approach ensures robust galaxy detection while
minimizing false positives and balancing computational
demands.

Distribution of Metrics Results Across the Test Set
See Fig. 9.

CLEAN Algorithm
The CLEAN algorithm [1], [2] is the standard iterative
method for deconvolution in radio interferometry, designed
to reconstruct high-fidelity astronomical images from sparse
UV plane data. It addresses the artifacts and distortions
introduced by the incomplete sampling of the UV plane,
modeled through the instrumental PSF.

Steps in CLEAN
In this section we briefly describe the key steps in CLEAN:

Identify the peak: Locate the pixel with the highest in-
tensity in the dirty image, representing the strongest source.

Model the source: Represent this peak as a point source
and scale it by a gain factor (typically between 0.1 and 1.0)
to prevent over-subtraction.

Subtract the PSF: Subtract the scaled PSF, centered at
the peak location, from the dirty image. This removes the
influence of the detected source and its associated artifacts.

Iterative refinement: Repeat the identification and sub-
traction process until a stopping criterion is met, such as
reaching a noise threshold or completing a fixed number of
iterations.

Construct the CLEAN image: Combine all identified
sources (CLEAN components) into a model image and
convolve them with a smoothed PSF to restore resolution.

Add residuals: Add the residual image (which contains
noise and unresolved sources) back to the CLEAN model to
produce the final image.

CLEAN provides a simple and robust framework for in-
terferometric imaging, making it the gold standard in radio
astronomy for decades. However, it can be computationally
intensive, particularly for large datasets. CLEAN is also
sensitive to calibration errors and struggles with complex
source structures or noise-dominated regions. It assumes
that the PSF is well-characterized, which may not hold true
in all observational scenarios, especially for wideband or
wide-field imaging.

Additional Comparison Examples with CLEAN and POL-
ISH Methods
See Fig. 10.
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