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Abstract—Lens flare is a common artifact in photography, caused by unintended reflections and scattering within a camera’s optical
system. Despite advances in optical design, consumer cameras frequently capture images with distracting flare artifacts that obscure
details and reduce image quality. These artifacts vary widely in appearance due to the complex interplay of lens design, manufacturing
imperfections, and environmental factors like dust and scratches, rendering them a random phenomena. Existing computational
methods for flare removal often rely on simplistic assumptions or hardware-specific solutions, limiting their generalization and
effectiveness in real-world scenarios. To address these challenges, we try to improve and further, build upon existing learning-based
approach that leverages semi-synthetic data for training. The existing framework generates diverse, realistic flare-corrupted image
pairs using a combination of wave-optics modeling for scattering effects and a data-driven approach for internal reflections. This
dataset allows us to train more recent architectures (previously underutilized in flare reduction) such as U-Net++, U-Net3+ and ViT to
remove flare while preserving light sources, paving out a way to integrate vision based transformer approaches in place of the original
U-Net implementation. Our models, trained exclusively on semi-synthetic data, generalize well to real-world images, demonstrating
robust performance across diverse scenes and flare types. The codes and trained models are publicly available at
https://github.com/Convolution/computational imaging.git

Index Terms—Computational Imaging, Lens Flare Removal, Convolutional Networks (U-Nets), Transformers, Encode Decoder
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1 INTRODUCTION

S TRONG light source scenes in photographs frequently
display lens flares, which are noticeable visual artifacts

brought on by accidental reflections and scattering within
the camera system. Flare artifacts can obscure image con-
tent, diminish detail, and be distracting. Even tiny light
sources can result in noticeable artifacts when captured by
consumer cameras, despite tremendous efforts in optical
design to reduce lens flare.

The lens’s optics, the light source’s position, manufac-
turing flaws, and dust and scratches from regular use all
affect flare patterns. Lens flare manifests in a variety of
ways due to the wide range of underlying causes. Halos,
streaks, brilliant lines, saturated blobs, color bleeding, haze,
and many more are examples of common artifacts. Because
of this variability, removing flares is a notoriously difficult
and random phenomenon.

The majority of lens flare removal techniques now in use
naively rely on template matching or intensity thresholding
to locate and identify the artifact, failing to take into consid-
eration the physics of flare creation. As a result, they are not
effective in more complicated real-world situations and can
only identify and maybe eliminate a small variety of flares,
such as saturated blobs.

The absence of training data is the primary obstacle.
A mechanism to ”switch” the artifacts on and off without
also altering the scene’s illumination would be necessary,
and collecting a large number of perfectly aligned image
pairs with and without lens flare would be laborious at
best and impossible at worst. This can be done with a lot
of work by gathering pairs of tripod-shot photos in which
the photographer manually positions an occluder between
the camera and the illuminant in one picture. However, this
method is too time-consuming to generate the dozens or
millions of image pairs that are often needed for neural
network training. Additionally, this limits usability as it
works only when the flare-causing illuminant lies outside
of the camera’s field of view.

To get around this problem, we add artificial flares
to the data that are produced using a wave optics-based
model that simulates the scattering situation (such as dust,
scratches, and other flaws). Since an exact optical model
for a commercial camera is frequently unavailable, a rig-
orous data-driven technique is utilized to address the un-
intentional reflections between lens elements. We are able
to produce a sizable and varied dataset of semi-synthetic
flare-corrupted photos using this formulation, together with

https://github.com/Convolution/computational_imaging.git
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ground-truth flare-free images.
Another challenge is removing flare while keeping the

visible light source intact. Even with semi-synthetic data,
this is challenging since we are unable to isolate the light
source from the flare-only layer without altering the flare
it causes. As a result, if the network is trained naively, it
will attempt to eliminate both the flare and the light source,
producing outputs that are implausible. In order to do this,
we employ a post-processing step to maintain the light
source in the output and a loss function that disregards the
light source region.

We minimize a loss function on the residual (also known
as the inferred flare) and the expected flare-free image
during training. The networks can eliminate various forms
of flare in a range of scenarios and only need a single RGB
image captured by a regular camera during testing. The
models perform well when applied to real-world photos,
despite being trained solely on semi-synthetic data.

2 RELATED WORK

2.1 Hardware solutions

To reduce flare, high-end camera lenses frequently use com-
plex optical designs and materials. Every glass component
that is added to a compound lens to enhance image quality
also increases the likelihood that light will be reflected off
of its surface, producing flare. Applying anti-reflective (AR)
coating to lens components is a popular method that lowers
internal reflection by destructive interference. Nevertheless,
this coating’s thickness cannot be ideal because it can only
be tailored for specific wavelengths and angles of incidence.
Furthermore, it is costly to apply an AR coating to every
optical surface, and it may conflict with or prevent other
coatings (such as anti-scratch and anti-fingerprint).

2.2 Computational methods

A two-step procedure is used by certain systems [1], [2],
[3]: first, the scene behind the flare zone is recovered using
inpainting [4], and second, the lens flare is detected based on
its distinct shape, location, or intensity (i.e., by recognizing
a saturated region). These techniques are susceptible to
misclassifying all bright regions as flares and only operate
on specific sorts of flares, such as bright spots. Furthermore,
these methods ignore the fact that the majority of lens flares
are better represented as a semitransparent overlay on top
of the underlying scene by classifying each pixel as either
”flare” or ”not flare.”

2.3 Hybrid methods

Researchers have employed computational imaging, in
which post-processing algorithms and camera hardware are
built together. Using structured occlusion masks, Talvala et
al [5] and Raskar et al [6]. tried to block flare-causing light
selectively. They then used either direct-indirect separation
or a light field-based technique to recover the scene free of
flares. Despite their elegance, their usefulness is restricted
since they need specialized hardware.

2.4 Learning-based image decomposition
Wu et al. [7] had success removing flares by utilizing a
modified U-net architecture, but their work struggled in
scenes that had strong flare over the entire image, and
they did not consider more recent architectures available
nowadays.

3 PHYSICS OF LENS FLARE

All of the rays from a point light source should converge
and refract to a single spot on the sensor when the camera is
in focus. In practice, real lenses scatter and reflect light along
unintended paths, resulting in flare artifacts. The scattered
and reflected parts only constitute a small fraction of each
incident light ray. As a result, flare is ubiquitous but invisible
in the majority of photos. However, the tiny percentage of
scattered and reflected rays from a bright light source (like
the sun) that is many orders of magnitude brighter than the
rest of the picture will cause apparent artifacts at other pixels
on the image. The geometry of the scattering from dust
and scratches, and that of the multiple reflections, result in
characteristic visual patterns. On a high level, flares can be
classified into two major categories: scattering-induced and
reflection-induced.

Scattering flare Although a perfect lens is 100% refrac-
tive, actual lenses contain several flaws that scatter light.
Either regular wear (dust and scratches) or manufacturing
flaws (dents) could be the cause of the scattering (or diffrac-
tion). This results in a secondary set of rays that are scattered
or diffracted rather than traveling down their intended
routes, in addition to the original rays that are refracted.
Scratches create streaks that seem to ”emit” radially from
the light source, whereas dust adds a rainbow-like look.
Additionally, scattering can make the area surrounding the
light source appear hazy by reducing contrast.

Reflective flare Every air–glass interface in a practical
lens system presents a chance for a tiny amount of reflection,
usually around 4%. These reflected flares usually appear on
the image along the straight line that connects the principal
point and the light source. As seen in ??, they are sensitive
to the angle of incidence of the light source, but not to
rotation about the optical axis. The aperture’s geometry, size,
and placement determine the flare’s shape; if the aperture
partially blocks the reflection more than once, arc-shaped
artifacts may arise. AR coating can be utilized to lessen
reflection, as was previously indicated. But wavelength also
affects how effective this coating is, thus lens flare can
have a range of hues, usually blue, purple, or pink. Since
reflected flare is dependent on lens design, it is predicted
that cameras of the same design—for example, all of the
primary camera modules of the iPhone 12—will image the
same scene with comparable reflective flares.

Challenges in flare removal It’s frequently challenging
to tell the various kinds of flare apart or distinguish them
visually. The position, size, intensity, and spectrum of the
light source, as well as the design and flaws of the lens,
can all have a substantial impact on how the flare appears.
Building a fully physics-based method to analytically detect
and eliminate every kind of flare is therefore impossible,
particularly when there are several artifacts in a single
image.
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4 RECONSTRUCTION ALGORITHM

Our goal is to train a model that predict a flare free image,
given an image corrupted by flare.

4.1 Losses
The loss function is based on the idea of only the flare
caused by the light source should be removed [7]. With that
in mind we measure two separate loss and sum them to
form our loss function. The first one is the loss of the image
with can be measured by a L1 norm and a perceptual loss.
Notice we do not want the model to inpaint the whole light
source so we take the image region as parts exclude the
saturated light source and express it as

Î0 = I0 ⊙M + f(IF ,Θ)⊙ (1−M) (1)

where M is a binary mask that mask out the satuation if the
input IF is greater than 0.99. The the loss function for the
scenes can be written as

LI =
∥∥∥Î0 − I0

∥∥∥
1
+

∑
ℓ

λℓ

∥∥∥Φℓ(Î0)− Φℓ(I0)
∥∥∥
1

(2)

Then we will use a similar loss function to model the
flare. First the region of the flare can be calculated by the
following formula

F̂ = IF − f(IF ,Θ)⊙ (1−M) (3)

Then the flare loss is given by

LI =
∥∥∥F̂ − F

∥∥∥
1
+

∑
ℓ

λℓ

∥∥∥Φℓ(F̂ )− Φℓ(F )
∥∥∥
1

(4)

And the final loss function is simply

L = LI + LF (5)

4.2 Light Source Blending
After removing the flare, we would like to add back the light
source to the image without the flare. Since the light source
itself is likely saturated, it could be easily identified based
on the intensity in mask M . To create a gradual transition
for the light source, a smoothing is applied to the mask M ,
and then introduced back to the image without the flare.

5 METHODOLOGY

The typical use of convolutional networks is on classifi-
cation tasks, where the output to an image is a single
classification label. However, in many imaging tasks (par-
ticularly in segmentation tasks), the desired output should
include localization on the pixel, while capturing global
context. Ronneberger et al. [8] proposed the U-Net which
showed significant success in various biomedical segmenta-
tion tasks, outperforming previous networks.

To address the challenge of lens flare removal, Wu et
al. [7] employed a U-Net architecture, drawing inspiration
from its success in biomedical segmentation. Recognizing
that lens flare is predominantly a low-frequency artifact,
they trained the U-Net on a dataset of semi-synthetic images
to predict a low-resolution flare-only image. In our work we
had limited computational resources, so we downsampled
the scene and flare data by a factor of 3 to speed up the
training process.
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Fig. 1: U-net architecture (example for 32x32 pixels in the low-
est resolution). Each blue box corresponds to a multi-channel
feature map. The number of channels is denoted on top of the
box. The x-y-size is provided at the lower left edge of the box.
White boxes represent copied feature maps. The arrows denote
the different operations.

5.1 Model Architectures

5.1.1 Baseline U-Net
The architecture is illustrated in Figure 1. It consists of a
contracting path (left side) and an expansive path (right
side). The contracting path follows the typical architecture
of a convolutional network. It consists of the repeated ap-
plication of two 3x3 convolutions (unpadded convolutions),
each followed by a rectified linear unit (ReLU) and a 2x2
max pooling operation with stride 2 for downsampling. At
each downsampling step we double the number of feature
channels. Every step in the expansive path consists of an
upsampling of the feature map followed by a 2x2 convo-
lution (“up-convolution”) that halves the number of feature
channels, a concatenation with the correspondingly cropped
feature map from the contracting path, and two 3x3 convo-
lutions, each followed by a ReLU. The cropping is necessary
due to the loss of border pixels in every convolution. At
the final layer a 1x1 convolution is used to map each 64-
component feature vector to the desired number of classes.
In total the network has 23 convolutional layers.

5.1.2 U-Net++
The U-Net++ architecture [9] in Figure 2 is a deeply super-
vised encoder-decoder network that aims to improve the
accuracy of medical image segmentation by redesigning the
skip pathways that connect the encoder and decoder sub-
networks. Instead of directly transferring feature maps from
the encoder to the decoder as in the standard U-Net, U-
Net++ introduces nested, dense skip pathways that grad-
ually enrich the semantic information of high-resolution
feature maps from the encoder before they are fused with
the corresponding decoder feature maps. Each skip path-
way consists of a dense convolution block with a variable
number of convolution layers, depending on the pyramid
level. These blocks employ a series of convolution opera-
tions and concatenation layers to progressively bridge the
semantic gap between the feature maps from different levels
of the encoder and decoder. This approach is based on the
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Fig. 2: (a) UNet++ consists of an encoder and decoder that
are connected through a series of nested dense convolutional
blocks. The main idea behind UNet++ is to bridge the semantic
gap between the feature maps of the encoder and decoder
prior to fusion. In the figure, black indicates the original U-
Net, green and blue show dense convolution blocks on the skip
pathways, and red indicates deep supervision. Red, green, and
blue components distinguish UNet++ from U-Net. (b) Detailed
analysis of the first skip pathway of UNet++. (c) UNet++ can
be pruned at inference time, if trained with deep supervision.

hypothesis that the optimization process will be facilitated
when the feature maps from the encoder and decoder are
semantically similar. By incorporating dense skip pathways,
U-Net++ addresses the limitation of standard U-Net, which
directly fuses semantically dissimilar feature maps, poten-
tially leading to suboptimal performance. This architectural
enhancement enables U-Net++ to more effectively capture
fine-grained details of the foreground objects, resulting in
more accurate segmentation masks, especially for medical
images where precision is critical.

5.1.3 U-Net3+
The U-Net 3+ architecture [10], as described in Figure 3,
builds upon the U-Net++ by further enhancing the uti-
lization of multi-scale features and introducing additional
components to improve accuracy. While U-Net++ utilizes
nested and dense skip connections to reduce the seman-
tic gap between the encoder and decoder, U-Net 3+ pro-
poses full-scale skip connections that incorporate informa-
tion from all scales of the encoder and decoder, enabling
the capture of both fine-grained details and coarse-grained
semantics. Each decoder layer receives input from smaller-
scale encoder layers via non-overlapping max-pooling, from
the same-scale encoder layer directly, and from larger-
scale decoder layers via bilinear interpolation, creating a
comprehensive multi-scale feature representation. This ap-
proach contrasts with U-Net++ which focuses on bridging
the semantic gap primarily between adjacent encoder and
decoder levels, while U-Net 3+ aims for a more holistic
integration of multi-scale information. Additionally, U-Net
3+ incorporates full-scale deep supervision by connecting
each decoder stage to a hybrid loss function, allowing for
hierarchical learning and optimization at various scales. The
hybrid loss function consists of focal loss, MS-SSIM loss,
and IoU loss, accounting for pixel-, patch-, and map-level
segmentation accuracy, respectively. The MS-SSIM loss, in

particular, assigns higher weights to fuzzy boundaries, pro-
moting more accurate segmentation of organ boundaries.
Furthermore, U-Net 3+ introduces a classification-guided
module (CGM) mitigating over-segmentation inimages by
multiplying the classification output with the segmentation
output. These advancements collectively enhance the ac-
curacy and efficiency of U-Net 3+ which clearly pose an
advantage to the problem at hand.

Fig. 3: Each decoder level has skip connections to smaller-
and same-scale feature maps from encoder, and larger-scale
feature maps from decoder. The black components represent
the original U-Net. The green and blue components represent
the dense convolution blocks on the skip pathways. The red
components represent deep supervision.

Fig. 4: ViT model

5.1.4 ViT
The overall ViT archetecture is presented in Figure 4. The
basic structure is mentioned in [11]. ViT is data hungry
model and unfortunately we do not have millions of data
for training, to be able to test the model with the data set
we have (around 27500 images), we used a pretrained ViT
model. However, the original task for the pretrainedmodel
is image classification and here we are dealing with image to
image task. So we only use the encoder part of it. Then we
connect the encoder with our transformer decoder, notice
we omit the cls token as it is not needed in our task.
Then we pass the output of decoder to a fully connected
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network with the number of units equal to patch dimension.
Through the dense layer, we got the flattened representation
of output image. And finally we reconstruct 224x224 image
from the flattened representation.

Fig. 5: ViT model

5.1.5 TransUnet
Transformers are powerful in modeling global context.
However, a classical transformer model exclusively focus
on modeling the global feature and might result in low res-
olution and lack of detailed localization information. Simple
upsampling does not work to recover these information. On
the other hands, Unet like networks have a great solution
for extracting low-level cues. Flares can be considered as
global features since they can appear in anywhere in the
image. Thus we want to take the advantage of transfomers
when extracting global features and also be able to preserve
high frequency details in the image. TransUnet [12] fits this
scenario perfectly. We adapt the TransUnet structure, use
pretrained ImageNet weights for the transformer block and
changed the number of transformers from 12 to 6 so that
it can be done with our current computing resources. The
structure of this model is shown in Figure 5.

5.2 Algorithmic Implementation
The algorithm for flare removal involves a comprehensive
pipeline that integrates data preparation, model training,
and evaluation. Input data is prepared by downsampling
a large dataset of flare-free images (27,449 images) to a
resolution of 224 pixels, alongside a separate downsam-
pling of lens flare images (5,001 images) to dimensions of
353×263 pixels. Test datasets, comprising real (20 images)
and synthetic (37 images) scenes, are also downsampled
to ensure compatibility with the training resolution. The
training employed U-Net, U-Net++, U-Net3+, ViT and Tran-
sUnet on semi-synthetic flare-corrupted images generated
by compositing flare-free images with flare overlays. The
model is configured to predict a flare-free scene, which
inherently risks removing the light source. To address this,
a post-processing step blends the predicted flare-free scene
with the original flare input, ensuring that the light source
is retained in the final output. Model training spans 150
epochs, using designated directories for input data, flare
overlays, and log storage. The evaluation phase utilizes
separate scripts to assess the model on real and syn-
thetic test datasets, comparing predictions against ground
truth images. Finally, qualitative and quantitative results
are generated by testing the trained model on held-out

datasets, producing both visual outputs and evaluation met-
rics (PSNR and SSIM). This three-step framework—input
generation, CNN/Transformer-based prediction, and post-
processing—effectively removes lens flare artifacts while
preserving the natural light source, ensuring high-quality,
artifact-free image as shown in Figure 6.

Fig. 6: All of our experiments follow the same three steps
framework: 1) Generate training input by randomly composit-
ing a flare-free natural image and a flare image. 2) A CNN is
trained to recover the flare-free scene (in which the light source
may also have been removed, which is undesirable). 3) After
prediction, Blend the input light source back into the output
image.

6 EXPERIMENTAL RESULTS

Method Synthetic Real
PSNR SSIM PSNR SSIM

U-Net (Baseline) 33.88 0.9309 30.25 0.9142
U-Net++ 34.83 0.9286 30.21 0.9119
U-Net3+ 33.38 0.9246 29.96 0.9140
ViT 32.47 0.8931 29.64 0.8432
TransUnet 35.67 0.9358 29.82 0.8972

TABLE 1: Quantitative comparison with related methods on
synthetic and real data.

To see how all the models are performed, we use both
synthetic and real images. Table 1 and Table 2 presents
the quantitative and qualitative performance comparison
respectively, using Peak Signal-to-Noise Ratio (PSNR) and
the Structural Similarity Index Measure (SSIM) as evalua-
tion metrics. We evaluate the performance over the test set
with respect to the ground truth images.

(a) U-Net segmented flare (b) TransUnet segmented
flare

Fig. 7: Qualitative comparison of UNet and TransUNet seg-
mented flare.

On the synthetic dataset, TransUnet achieved the highest
performance, with a PSNR of 35.67 and SSIM of 0.9358,
outperforming the baseline U-Net by notable margins of
1.79 dB in PSNR and 0.0059 in SSIM. This improvement
can be attributed to TransUnet’s hybrid architecture, which
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Ground
Truth

Input
Image

U-Net

PSNR: 32.23
SSIM: 0.9283

PSNR: 29.02
SSIM: 0.8332

PSNR: 33.84
SSIM: 0.9731

U-Net++

PSNR: 31.63
SSIM: 0.9300

PSNR: 29.42
SSIM: 0.8073

PSNR: 33.29
SSIM: 0.9663

U-Net3+

PSNR: 31.08
SSIM: 0.9158

PSNR: 28.66
SSIM: 0.8537

PSNR: 32.22
SSIM: 0.9661

ViT

PSNR: 32.28
SSIM: 0.8672

PSNR: 28.67
SSIM: 0.7554

PSNR: 33.92
SSIM: 0.9432

Trans-
Unet

PSNR: 33.19
SSIM: 0.9339

PSNR: 28.65
SSIM: 0.8174

PSNR: 32.55
SSIM: 0.9710

TABLE 2: Visual comparison of models evaluated on synthetic
and real scene images.

effectively integrates convolutional layers for local feature
extraction and transformers for capturing global dependen-
cies. U-Net++, with its densely connected skip connections,
followed with a PSNR of 34.83 and SSIM of 0.9286, in-
dicating its enhanced capacity to model complex spatial
relationships. The performance of U-Net3+ (PSNR: 33.38,
SSIM: 0.9246) suggests diminishing returns from additional
skip connections compared to U-Net++. ViT, with a PSNR of
32.47 and SSIM of 0.8931, underperformed, likely due to its
reliance on transformers alone, which may lack sufficient
inductive bias for spatially constrained tasks like image
reconstruction.

On the real dataset, U-Net (Baseline) showed compet-
itive performance, achieving a PSNR of 30.25 and SSIM
of 0.9142, marginally surpassing U-Net++ and U-Net3+.
TransUnet maintained strong performance with a PSNR
of 29.82, though its SSIM dropped to 0.8972, suggesting
possible overfitting to synthetic data characteristics. The ViT
model exhibited the lowest SSIM (0.8432), highlighting its
struggle to generalize to real-world variations due to the
lack of convolutional inductive priors.

These results suggest that architectures incorporating
both local and global feature extraction mechanisms (e.g.,
TransUnet) excel on synthetic data where patterns are well-
structured, but their generalization to real data may be con-
strained by overfitting. In contrast, convolution-dominant
architectures like U-Net variants demonstrate consistent
performance across both datasets due to their robust spatial
feature learning. The trade-off between global context mod-
eling and spatial inductive biases highlights the importance
of balancing these factors for diverse data domains.

We believe the reason is the following: (1) Usage of a
pretrained transformer model based on the task of image
classification. Even though transfomers are good transfer-
learners, under the limited dataset, they are not able to
generalize well. (2) Comparing the predicted flare image in
Figure 7, we can see that transformer models try to only
capture the possible flares but CNN models have captured
more general scene information. This might result from lack
of local inductive bias in transformers. Attention mechanism
makes it focus on global justification, so it tends to omit
the region where flare intensity is low and only learns
from stronger intensity region generally closer to the light
source. (3) Transformer based model generally have greater
number of parameters than CNNs, which in addition to the
relat ively small flare dataset, might have overfit the global
pattern of flare dataset as emphasized in transformer block
with the inability to generalize well to real scene data.

7 CONCLUSION

In this paper, we explore the performance of CNN- and
transformer-based models for lens flare removal. CNN-
based models demonstrated excellent performance in cap-
turing local spatial features, enabling robust generalization
even with a relatively small dataset. However, their reliance
on local context limited their capacity to fully capture global
scene information, occasionally impacting and modifying
scenes.

On the other hand, transformer-based models leveraged
their global attention mechanisms to achieve more accurate



7

flare prediction while better preserving background color
intensity. This was particularly evident in synthetic datasets,
where structured flare patterns were prevalent. Despite this
advantage, transformers struggled with real-world images,
likely due to overfitting on the limited synthetic training
data and a lack of strong local inductive bias. Their higher
parameter count and dependence on data-intensive training
data poses a limitation on their performance.

Given their demonstrated potential in leveraging global
context and preserving scene integrity, despite the use of
downsampled inputs (which may have impacted model per-
formance), transformers present a promising avenue which
we aim to further explore in the domain of flare removal.
Additionally, investigating hybrid architectures that inte-
grate the local feature extraction strengths of CNNs with
the global attention capabilities of transformers could lead
to more versatile and robust solutions.
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