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Smoothness in Distilled Feature Fields
Sruthi Srinivasan and Umangi Jain

Abstract—Neural radiance fields (NeRFs) are a popular approach for rendering novel views and have been extended to a wide range
of tasks such as editing, segmentation, and language-driven applications. Feature field distillation is a technique that facilitates editing
and zero-shot segmentation by utilizing knowledge from large-scale 2D extractors such as CLIP and LSeg to learn a 3D feature field
that is optimized in parallel to the radiance field. However, naive distillation can contain unwanted high-frequency artifacts, hampering
fine-grained control and resulting in imprecise scene decomposition. In our work, we address this challenge by generating smoother
Distilled Feature Fields (DFF) through the incorporation of explicit regularizers and off-the-shelf segmentation masks. Subsequently, we
assess the effectiveness of these smoothened features through scene editing. Our experimental results demonstrate that the feature
fields generated through our proposed method exhibits better smoothness compared to existing approaches. Our code is available at:
link.

Index Terms—Distillation, Radiance field, Representation learning, Scene editing
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1 INTRODUCTION

N EURAL radiance fields (NeRFs) [1] have emerged as a
compelling approach for novel view synthesis of 3D

scenes. However, the outputs of NeRFs themselves are low-
level representations of the geometry and color of the scene,
devoid of context and useful high-level semantics [2]. Recent
works in label transfer, including Panoptic NeRF [3] and Se-
mantic NeRF [4] have shown progress towards more holistic
semantic understanding of the scene. These approaches
have been further extended to transferring dense image
features to neural renderers in [5] [2] [6]. Since utilizing
dense representation for scenes by directly using off-the
shelf 2D feature extractors results in features which are not
view-consistent, these approaches distill the knowledge of
feature extractors into a 3D student network. The concept of
feature field distillation helps in representing 3D scenes in
terms of semantically meaningful features in addition to the
underlying geometry and color.

Distilled feature fields (DFF) are 3D neural feature fields
that map every 3D coordinate in a scene to a semantic
feature descriptor of that coordinate. Using the concept of
teacher-student distillation [7], a DFF is learned and opti-
mized in parallel to the radiance field by utilizing knowl-
edge from pretrained 2D feature encoders for supervision.
While DFFs have shown promising results for segmentation
and editing, they contain high-frequency artifacts as a result
of the underlying connectionist approach of the architecture
and the stratified sampling, critically required by NeRF
models, for training accurate radiance fields. In low spa-
tial frequency tasks such as editing and segmentation of
natural scenes, high-frequency noise resulting from fine-
grained sampling is undesirable, emphasizing the impor-
tance of smoothness in distilled feature fields. However, the
problem remains largely unaddressed. Kobayashi et al. [5]
address this issue and adapt an ad hoc approach by only
using coarse sampling for the feature fields. Nonetheless, as
shown in Figure 1, even the segmentation results from the
coarse MLP suffer from high-frequency artifacts.

In this work, we address the critical challenge of en-
hancing feature field distillation for NeRFs. The primary
objective is to promote smoothness and minimize high-

Fig. 1. High-frequency artifacts in distilled feature fields. Image taken
from [5]. Boxes have been added around the pillow and sofa edges for
highlighting the irregular decomposition.

frequency artifacts prevalent in DFFs, ultimately leading to
more precise and visually appealing scene decomposition.
The proposed method leverages the Segment Anything
Model (SAM) [8] to generate segmentation masks for ev-
ery rendered feature in the DFF pipeline. Gaussian blur
is then applied inside these segments obtained from the
SAM model. The key idea behind this approach is to make
the model more object-aware and facilitate edge-preserving
blurring. We test our approach against Total Variation (TV)
[9] and Bilateral Filtering [10] baselines since these two
techniques are also known to enforce smoothness while
preserving edges. Subsequently, we assessed the effective-
ness of the DFFs obtained from the proposed approach
on editing experiments, drawing a comparison against the
naive distillation approach.

2 RELATED WORK

2.1 Semantic and Object-aware Neural Rendering

There have been some efforts to introduce semantics into
radiance fields. Semantic-NeRF [11] incorporates multi-view
semantic fusion of 2D labels, while NeSF [12] utilizes den-
sity fields as input to a 3D segmentation model. However,
these methods are demonstrated on synthetic scenes with

https://github.com/umangi-jain/smooth-dff
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limited shapes and categories. Further Kundu et al. [3] pro-
posed an object aware panoptic approach to handle dynamic
scenes but this method required 3D labels for training.

2.2 Feature Field Distillation

Unlike label distillation, feature distillation provides denser
representation for a scene and also enables wider down-
stream applications. It leverages the immense developments
in 2D scene understanding for 3D feature fields. In the con-
text of feature fields for 3D scenes, the output of a 2D teacher
network (pre-trained 2D foundational vision models) is dis-
tilled into a student network (that implements a 3D feature
field) thus allowing for label free scene understanding.
The student network is in the 3D domain and the teacher
network in 2D domain. Kobayashi et al. [5] employed LSeg
[13] and DINO [14] as teacher networks, distilling their
outputs into 3D feature fields for tasks like 3D semantic seg-
mentation and editing. Kerr et al. proposed LERF [6], which
integrates 2D CLIP [15] embeddings into NeRF, producing
3D CLIP embeddings for generating relevancy maps in re-
sponse to text queries. Tschernezki et al. [2] explore distilling
2D semantic features from teacher networks (DINO, MoCo-
v3 [16], DeiT [17]) into their 3D model (NeuralDiff [18]).
Although naive distillation in DFFs, built on NeRF and its
variants, tends to suffer from high-frequency noise, that can
make scene decomposition irregular.

2.3 Smoothness Approaches and Priors

In the domain of neural networks, Ramasinghe et al.
[19] investigate regularization in coordinate-MLPs. Another
method [20] applies regularization on the geometry of a
NeRF for view synthesis from sparse inputs. Notably, there
is a lack of established techniques specifically addressing the
smoothness issue in distilled feature fields. Building on the
work by Kobyashi et al. [5], our approach aims to generate
smoother Distilled Feature Fields through the incorporation
of explicit regularizers and segmentation masks.

3 PROPOSED METHOD

In this section, we briefly review the distillation process to
learn 3D feature fields for scenes from 2D-image teacher
model and describe our approach to smooth the rendered
featured fields obtained from distillation. Section 3.1 pro-
vides the general set-up of feature distillation from 2D to
3D. Segment Anything (SAM) is described in section 3.2 and
sections 3.3 and 3.4 discusses our method and implementa-
tion details, respectively. Overview of our approach can be
found in Figure 2.

3.1 Review of feature distillation

Feature fields for 3D scenes are built on top of existing
NeRF (and its variants) models. Given a point coordinate
x = (x, y, z) and a view direction d in a 3D scene, NeRF
maps it to an output density σ(x) and color c(x,d) us-
ing multilayer perceptions. To learn a student feature field
model, NeRF produces, in addition to σ(x) and c(x,d), a
feature vector f(x). Similar to the volume rendering for the
color, a feature rendering is applied to the predicted feature

field to produce feature maps for the rendered scene F̂(r)
(where r is the pixel camera ray).

F̂(r) =
K∑

k=1

T̂ (tk)α(σ(xk)δk)f(xk) (1)

where T̂ (tk) = exp(−
∑k−1

k′=1
σ(xk′ )δk′ ), α(x) = 1 −

exp(−x) and δk = tk+1 − tk (distance between adjacent
point samples. Rendered colors, Ĉ(r), are also produced
using the same rendering equation.

These rendered features are supervised by the teacher’s
feature fimg(I, r), obtained from a 2D feature extractor.
Along with the photometric loss Lp that NeRF minimizes,
an additional feature loss Lf is minimized for learning the
feature field. The total loss is given by:

L = Lp + λLf (2)

Lp =
∑
r∈R

||Ĉ(r)−C(r)||22, Lf =
∑
r∈R

||F̂(r)− fimg(I, r)||1

(3)
where C(r) is the ground truth pixel color of ray r and λ is a
hyper-parameter to weigh the two losses. A stop-gradient is
applied to density when feature rendering. As the teacher’s
features are not 3D consistent, it could potentially harm the
learnt geometry of the scene.

3.2 Segment Anything Model
Segment Anything model (SAM) [8] is a foundational model
for the task of image segmentation. It is trained on a dataset
of 11 million images with over 1 billion masks. As a con-
sequence of being trained on a large and diverse dataset,
SAM efficiently adapts to a diverse image distributions and
tasks without any further fine-tuning. Extensive evaluation
of segmentation masks produced by SAM has shown that
the zero-shot segmentation outputs are remarkable - even
surpassing fully supervised approaches for certain settings.

For a given image, SAM produces multiple masks and
their corresponding confidence score. These masks are of-
ten objects or sub-parts of objects. We apply SAM to the
rendered images Ĉ(r) to obtain segments in the image. We
also apply non maximal suppression to remove overlapping
masks and only consider masks with an area above a certain
threshold (to reduce any additional noise that might be
introduced). A subset of all the SAM masks for a rendered
image in a drum set is shown in Figure 3. The resulting
object decomposition is of a much lower spatial frequency
than the geometry of the rendered image.

3.3 Feature smoothening
Owing to the underlying connectionist representation in
NeRFs, the volume decomposition of scene using DFFs
might not always be smooth. To eliminate high-frequency
artifacts from the decomposition, we propose smoothing
using masks obtained from SAM.

We follow [5] by first training the NeRFs without a fea-
ture branch and optimizing only for the radiance field (Lp).
We then switch to fine-tune the feature fields in conjunction
with the radiance fields (Lp + Lf ) as the radiance field
converges much faster when the geometry is well-trained.
When fine-tuning for the feature fields, since the geometry
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Fig. 2. Overview of the distillation process from language-2D image teacher model to 3D student model. Masks from Segment Anything Model
(SAM) used for smoothing the rendered features.

Fig. 3. An image from the rendered scene (left) is passed through the Segment Anything Model to obtain semantic masks. Shown above are four
samples from all the masks.

and color of the scene is already sufficiently trained, we pass
the rendered image from the model to SAM to generate no-
overlapping masks of low-spatial frequency for the image.
We then use these masks to selectively blur features falling
in that particular mask. The Gaussian blurring helps fea-
tures from the same object or parts of the same object to
eliminate high-frequency noise. This smoothed features are
then used for the feature loss (Figure 2).

We also test our model on bilateral filtering and explicit
regularizers such as anisotropic total variation to help in
cohesive decomposition.

• Total Variation (TV) [9]: TV regularization is a tech-
nique introduced for image denoising and recon-
struction. It serves as a measure of the variation in
input intensity over its domain. TV helps in achiev-
ing a more cohesive decomposition of features by
encouraging spatial continuity. This approach is par-
ticularly effective in maintaining edge information
while smoothing out noise and small fluctuations in
uniform regions of the image. For each dimension of
the rendered features, we add an additional regular-

izer, given by:

Lani tv =
∑
ij

||(DhF̂)ij ||1 + ||(DvF̂)ij ||1

Liso tv =
∑
ij

√
(DhF̂2

ij) + (DvF̂2
ij)

L = Lp + λfLf + λtvLtv

(4)

where Dh and Dv are horizontal and vertical finite
difference operators respectively.

• Bilateral Filtering [10]: Bilateral filtering is a non-
linear, edge-preserving, and noise-reducing smooth-
ing filter for images. It differs from typical Gaussian
blurring by considering both the spatial distance
and the intensity difference when performing the
smoothing. This ensures that edges are preserved
while reducing noise. We apply bilateral filter on the
rendered features as another baseline.

3.4 Implementation Details
In this section, we discuss the training details and design
choices for the model.

Teacher model: For the teacher model we use LSeg [13],
a model developed for zero-shot semantic segmentation by
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(a) Rendered Images

(b) Vanilla Distillation

(c) Anisotropic total variation

(d) Bilateral filtering

(e) SAM-guided Gaussian blurring

Fig. 4. Visualization of different smoothing techniques on three scenes of vegetables, flower, and room.
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aligning pixel and text query feature. It used an image
encoder with DPT architecture [21] and a CLIP-based [15]
text encoder, ft. For downstream applications, given a pixel
r in an image I , the probability of a text l is given by

p(l|I, r) = exp(fimg)ft(l)
T∑

l′∈L exp(fimg)ft(l
′)T

(5)

where L is the set of possible labels. This is used for
obtaining parts of the scene aligned with the text prompt
for segmentation/editing. The features obtained from the
teacher model are of a reduced size and are resized to the
original size of the image for training. The feature length for
each pixel in the image is 512 by default.

Student model: While the general idea of feature field
distillation can be used with several NeRF-like models,
we use a variation of Torch-NGP1. We keep all the other
parameters (depth and size of MLP for color, density, and
features) similar to [5].

Regularizers: For SAM-guided Gaussian blurring, we
use a kernel of size 3 and sigma is computed using the
default PyTorch setting of 0.3× ((kernel size− 1)× 0.5−
1) + 0.8. We set the IoU cutoff used by non-maximal sup-
pression to be 0.2 to avoid computing over the same pixels
repeatedly. The hyper-parameter for weighting features λf

is kept at 10−2. For the TV regularizer, the weight of TV
loss is set at λtv = 10−3. For the bilateral filter, the diameter
for each pixel neighbourhood is 15. No fine-tuning has been
performed on these choices.

Model training: We train the model for 5 epochs. Com-
pared to the DFFs trained in [5] for 20 epochs, our rendered
features are therefore inferior in quality. To compare against
their approach, we train all the scenes for only 5 epochs.
While most scenes can benefit from further training, this
choice is set due to the computational and time constraints.

4 EXPERIMENTAL RESULTS

In this section, we detail the dataset and downstream appli-
cation in section 4.1 and the results obtained are discussed
in section 4.2.

4.1 Experimental Setup

4.1.1 Dataset
We test the smoothness priors on the dataset released in [1]
and [5]. Each scene has between 34-100 images, allowing us
to test the models for performance with varied number of
view availability.

4.1.2 Downstream task and metrics
We test the model on the task of editing that includes ex-
traction, deletion, and colorization. For editing, the selected
region is found using query-based scoring and an appropri-
ate transformation is applied. For the task of deletion, the
density of the selected points is set to zero and for the task
of colorization, color is editing by a coloring function. Since
editing is a subjective task, we present qualitative results in
Figure 5.

1. https://github.com/kwea123/ngp pl

TABLE 1
Quantitative metrics on the rendered image and rendered features.
PSNR, SSIM, LPIPS are measured on the rendered and the ground
truth image. Cosine similarity and MSE are calculated between the

rendered feature vector and the teacher feature vector.

PSNR LPIPS SSIM Cos MSE

Vanilla [5] 26.19 0.3717 0.8373 0.9633 1.38e-4
Total Variation 26.86 0.3622 0.8505 0.9804 7.65e-4

Bilateral 26.38 0.3689 0.843 0.9698 1.14e-4
SAM-guided 26.18 0.3676 0.8496 0.9764 9.03e-4

We use SSIM [22], LPIPS [23], PSNR for the rendered
image and and show mean squared error and cosine similar-
ity between the rendered features and the features obtained
from the teacher network. Although, it is worth noting that
these metrics for rendered features are not extensive and
the performance of the feature depends on the downstream
application.

4.2 Results
To qualitatively assess the features obtained from distillation
through different approaches, we reduce the dimensionality
of the rendered features using Principal Component Analy-
sis (PCA). Figure 4 shows the quality of rendered features
for three different scenes. For all the three scenes, it can be
seen that the regularizations and blurring provides sharper
features. Compared to the baseline of vanilla distillation,
all approaches result in smoother segments. For instance,
for the vegetables scene, the curves around the apple are
smoother and there is also reduced noise next to the banana.
Similarly, for the flower scene, the petals on the left side of
the flower are more clearly demarcated. In the room scene,
the edges of the table and television also looks sharper.
Table 1 shows quantitative results between the different
approaches. It can be seen that feature smoothing does not
hurt the geometry of the underlying scene as the rendered
images metrics do not go down.

While the smoothing techniques shows improvement,
a quantitative comparison between them is difficult as the
feature quality depends on the downstream application. For
bilateral filtering, it was observed that it is prone to over
smoothing (can be seen the flower scene where the petals
have been blurred). Total variation and SAM-based blurring
both perform better on different scenes.

We use these feature representation for editing. Figure 5
compares performance of vanilla distillation, total variation,
and SAM-guided blurring for the vegetables and flower
scene. Editing the room scene was difficult as it is a complex
scene and our models were only trained for 5 epochs. As
seen in the figure, the vanilala distillation scene has more
noise in the background, compared to our approaches which
reduce these noises. For the deletion editing, total variation
shows better inpained results than SAM-based and vanilla
approach.

5 CONCLUSION AND FUTURE WORK

In this work, we propose a SAM-guided method for the
rendering of smoother Distilled feature fields (DFFs). Ad-
ditionally, we also test our scenes on simpler baselines of
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(a) Task: Extract “apple” from the scene. (left) Vanilla distillation, (center) Total variation, (right) SAM-guided

(b) Task: Delete “flower” from scene. (left) Vanilla distillation, (center) Total variation, (right) SAM-guided

Fig. 5. Extraction and deletion of objects in the scenes using different smoothing techniques.

total variation (TV) and bilateral filtering. Through editing
experiments, we show that the SAM-guided method and
TV produces smoother feature fields as compared to naı̈ve
DFFs. On the other hand, bilateral filtering over-smooths the
segments. Our observations, supported by PCA-based fea-
ture map visualizations and editing experiments, indicate
that additional smoothing techniques improve the baseline
naı̈ve DFF (especially evident for the backgrounds in the
scene). Moreover, quantitative metrics reveal that the appli-
cation of these smoothness techniques does not compromise
the geometry of the scene and demonstrates high similarity
with the teacher model features.

Future endeavors include extending the qualitative and
quantitative evaluation of these feature fields to different
downstream tasks, such as segmentation. An intriguing av-
enue for further exploration involves studying the influence
of various 2D extractors on the smoothness of the rendered
feature fields. An ablation study on varying the SAM masks
granularity and testing the effects on the learnt geometry is
also an interesting future work.
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