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FA-UNet: An Attention-UNet-based Frequency
Domain Image Denoising and Deblurring

System
Yiming Jia, Haoyang Ju, Shiyuan Feng

Abstract—FA-Unet introduces a novel approach in digital image processing, focusing on denoising and deblurring through the
frequency domain. Diverging from traditional spatial domain methods, this technique utilizes frequency-based separation to effectively
isolate and address image distortions. Central to FA-Unet is the application of attention mechanisms, adapted from language
processing, to selectively target and improve areas most affected by noise and blur. This targeted restoration approach promises
significant improvements in various applications, including medical imaging, satellite imagery, and general photography, offering a new
direction in high-quality image enhancement.
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1 INTRODUCTION

IN the field of digital image processing, improving the
quality of images is a significant challenge. Images often

suffer from problems like blur due to movement or camera
shake, and noise, which can look like random specks or
grain [1]. These issues can make images less clear and less
useful, especially in important areas like medical imaging,
satellite photos, and everyday photography. Most current
methods to fix these problems work in the spatial domain
[2], meaning they try to adjust the pixels directly. However,
methods for image denoising in the frequency domain have
not been fully studied.

Our project, titled ”FA-Unet”, seeks to innovate in this
domain by shifting the paradigm from the conventional spa-
tial domain to the frequency domain. The frequency domain
offers a unique perspective on image data, representing it
in terms of frequency components rather than the spatial
distribution of pixel values. This shift is crucial because it
allows for the separation of image components based on
their frequency characteristics, which is often more effective
for identifying and isolating noise and blur elements.

A key feature of our method is using attention mecha-
nisms [3] in the frequency domain. Attention mechanisms,
which have been very successful in areas like language
processing, help our method focus on the specific parts
of an image most affected by noise and blur. This means
that our method doesn’t just apply the same changes to the
whole image, which can sometimes make the image worse.
Instead, it targets only the parts that need fixing.

The potential applications of ”FA Unet” are vast. In
medical imaging [4], clearer images can lead to more ac-
curate diagnoses. In satellite imagery [5], enhanced clarity
can improve the analysis of geographical and environmental
data. In the realm of photography, both professional and
amateur photographers can benefit from images that are
sharper and free from unwanted noise and blur.

The results achieved by FA-UNet in our experiments are
a testament to the method’s effectiveness and the impor-

tance of frequency domain analysis. The notable increase in
the average Peak Signal-to-Noise Ratio (PSNR) of images,
from 13 to 23, empirically demonstrates the substantial
improvement in image quality. This significant leap in PSNR
not only highlights the ability of FA-UNet to effectively
remove noise and blur from images but also underscores
the crucial role that frequency domain processing plays in
achieving superior image clarity and detail retention.

In conclusion, our project is a new way of fixing im-
ages that leverages the untapped potential of the Fourier
domain, combined with the power of attention mechanisms.
We believe that ”FA Unet” offers a novel solution to a
longstanding challenge in the field.

2 RELATED WORK

The proliferation of digital imaging has escalated the de-
velopment of sophisticated image processing techniques,
notably in deblurring and denoising [6] [7]. These advance-
ments are increasingly powered by machine learning tech-
nologies.

2.1 Frequency Domain Image Processing
The concept of processing images in the frequency domain
has been a cornerstone in the field of digital image en-
hancement for decades. Unlike spatial domain techniques
that manipulate pixel values directly, frequency domain
methods involve transforming the image into a frequency
representation, typically using Fourier transforms [8]. This
approach is particularly advantageous for identifying and
isolating periodic patterns, noise, and other high-frequency
components that are not as readily apparent in the spatial
domain. Early applications of frequency domain techniques
primarily focused on basic filtering tasks, such as low-
pass and high-pass filtering [9], which were effective for
smoothing or enhancing image features, respectively. How-
ever, these techniques often overlooked the complexity and
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variability of noise and blur in real-world images, leading
to suboptimal enhancement outcomes.

Recent advancements in frequency domain image pro-
cessing have seen significant developments, particularly
in the realms of noise reduction and image sharpening.
Modern approaches now incorporate more sophisticated
algorithms that adaptively modify frequency components
based on the image content [10]. This has led to more
effective handling of diverse types of noise and blur that
are commonly encountered in practical scenarios, such as
Gaussian noise and motion blur. The advent of machine
learning has further revolutionized this field, enabling more
intelligent and content-aware frequency domain processing
[11]. These advanced methods can now better distinguish
between noise and actual image details, significantly en-
hancing the ability to restore and improve overall image
quality. Despite these advancements, the challenge of seam-
lessly integrating these techniques into real-time processing
applications remains, as frequency domain transformations
are computationally intensive and often require substantial
processing power.

2.2 Attention Mechanisms in Image Processing
Attention mechanisms, originally conceptualized for tasks
in natural language processing, have been adeptly adapted
for image processing. Their ability to dynamically focus on
relevant portions of an image has made them essential in
various advanced applications: Vision Transformers (ViTs)
[12]: Vision Transformers have been a groundbreaking de-
velopment in computer vision. For instance, Google’s ViT
model [13] applies the transformer architecture to image
classification tasks, breaking down images into sequences of
patches and using self-attention mechanisms to understand
the global context of the image. This approach has shown
remarkable success in areas like image classification and
object detection. Gated Attention Networks for Noise Re-
duction [14]: In image denoising, gated attention networks
have been used to focus on noise patterns within an image
selectively. By concentrating on these areas, these networks
enhance the effectiveness of the denoising process, leading
to clearer and more accurate image restoration.

2.3 CNN-Based Denoise and Deblur Models
Advances in denoise models, especially those using deep
learning, have dramatically improved noise removal capa-
bilities. CNNs [15], due to its strong expressive abilities, is
one of the main techniques widely used for image denois-
ing. For instance, Lan et al. [16] embedded residual block
into a CNN to reduce noise for obtaining clean images. Shi
et al. [17] integrated hierarchical features to obtain richer
information to improve denoising results. Unet [18], as a
powerful variant of CNN, has also been applied to image
denoising tasks. For example, Fan et al. [19] proposed a
way of combining Unet with Transformer layer to enhance
the denoising performance. Huibin et al. [20] fused self-
attention mechanism into a residual Unet model to guide
it suppressing the noise in digital images.

Deblur models have similarly evolved, addressing image
blur due to motion or focus issues. Numerous methods [21]
[22]train 2D CNNs to sharp images. Tao et al. [23] leverage

Fig. 1. Data preprocessing pipeline.

Fig. 2. Data postprocessing pipeline.

recurrent layers to extract features across images at multiple
scales in a coarse-to-fine manner. To avoid vanishing or
exploding gradients during training, DeblurGAN [24] uses
global residual layers to directly connect low-level and high-
level layers in the area of image deblurring. The attention
layer can help deep networks focus on the most important
image regions for deblurring. Shen et al. [25] propose an
attention-based deep deblurring method consisting of three
separate branches to remove blur from the foreground, the
background, and globally, respectively.

These developments reflect the dynamic nature of ma-
chine learning in enhancing image quality, showcasing sig-
nificant progress in attention-based models, denoising, and
deblurring techniques.

3 PROPOSED METHOD

In our approach, we combine the structures of R2U-Net
and Attention U-Net to construct our image reconstruction
model and use a three-stage supervised training approach to
train it. To adapt our model for frequency domain process-
ing, we have to transform existing datasets from the spatial
to the frequency domain.

3.1 Data processing pipeline

Since our model works in the frequency domain, we have
to build a data preprocessing pipeline to transform natural
image data in the spatial domain into the frequency domain
to generate the model input, and a data postprocessing
pipeline to do the reverse operation for easier visualization.
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In our preprocessing pipeline, as shown in Figure 1,
we first took the three-channel images that needed to be
reconstructed, applying Fast Fourier Transform (FFT) on
them to convert them into the frequency domain tensors,
while the dimensionality remains the same. However, a
challenge arises due to the tensors in the frequency domain
being composed of complex numbers, while neural net-
works are designed to process real numbers. To address this,
we considered two options to fit our data into the neural
networks: The first option was to retain only the real part or
take the absolute values, but this option preserved only part
of the information and resulted in unsatisfying outcomes in
experiments. The second option, which we adopted, is to
separate the real part and imaginary part of each tensor of
an image and concatenate them in the channel dimension.
This approach allows us to keep all the information of the
tensor. The finial model input is a six-channel tensor.

In our postprocessing pipeline, which is shown in Figure
2, we perform operations that are the inverse of those in
the preprocessing pipeline. We take the six-channel tensors
outputted by our model and divide them into two sets of
three-channel tensors, corresponding to the real and imag-
inary parts. These parts are then recombined into complex
numbers. Finally, we perform Inverse Fast Fourier Trans-
form (iFFT) to get the reconstructed image in the spatial
domain.

3.2 Neural Networks Structure
Our model incorporates recurrent convolutional layers
within a U-Net framework, enabling the network to revisit
the input data iteratively. This feature is crucial for complex
tasks such as image denoising and deblurring, where dis-
tinguishing between useful signal and disruptive noise can
be challenging. The recurrent layers enhance the model’s
ability to capture and emphasize important features while
suppressing irrelevant ones over successive iterations.

Moreover, the attention modules depicted in the
schematic are strategically placed to focus the model’s ca-
pacity on areas most affected by noise and blur. These mod-
ules act selectively, improving the clarity of the output by
adjusting the processing power applied to different regions
of the image. The attention-driven focus is especially bene-
ficial for maintaining the integrity of edges and textures—a
common concern in the denoising and deblurring process.

Together, these components form a powerful neural net-
work, as illustrated, that is finely tuned for the intricate de-
mands of image enhancement, achieving a balance between
depth of feature extraction through recurrence and precision
through attention.

3.3 Training Method
In FA-Unet, we propose an image denoising + deblurring
model training pipeline for Unet-based models and it con-
sists of two pretraining stages and one E2E training stage as
shown in Figure 4. Through experiments, this structure out-
performs various other structure candidates, for example,
based on transfer learning on a single UNet model (missing
stage 3 in Figure 4) or structures similar to language model
encoder pretraining which is usually used in NLP field
(missing stage 2 in Figure 4).

Model Pretraining Stage In model pretraining stages,
two Unet-based models are separately initialized. One of
them will be trained on noisy-only images to perform image
denoising task (Stage 1) and the other will be trained on
blurry-only images to train its image deblurring ability
(Stage 2). For image denoising task, we choose to use MSE as
loss function as it is based on L2 norm. For image deblurring
task, we utilize MAE loss which is based on L1 norm (Ap-
pendix A). Stage1 and Stage2 in Figure 4 can be performed
in parallel to increase model pretraining efficiency.

Model E2E Training Stage In model E2E training stage,
above two pretrained models are concatenated in ”first de-
noising, second deblurring” sequence and the whole system
is trained end-to-end on both noisy and blurry image inputs.
This stage’s final output will be the FA-Unet system’s image
output.

4 EXPERIMENTAL RESULTS

4.1 Datasets
The GoPro Dataset, specifically designed for image de-
blurring tasks, comprises a collection of 3,214 images of
1,280×720 resolution. This dataset is divided into 2,103 train-
ing images and 1,111 test images. It features realistic pairs
of blurred and corresponding sharp images, captured using
a high-speed camera. This makes the dataset a valuable
resource for research and development in image and video
deblurring algorithms.

For more details, please refer to the dataset page
on Papers With Code: https://paperswithcode.com/dataset/
gopro.

The Intel Image Classification dataset, hosted on Kaggle,
includes approximately 25,000 images categorized into six
classes: buildings, forest, glacier, mountain, sea, and street.
These images are provided in high resolution and a stan-
dardized resolution of 150x150 pixels. The dataset is divided
into three subsets: 14,000 images for training, 3,000 for
testing, and 7,000 for prediction tasks. This dataset is par-
ticularly useful for machine learning and computer vision
applications, focusing on natural scene classification.

For more detailed information, you can visit the dataset
page on Kaggle: https://www.kaggle.com/datasets/
puneet6060/intel-image-classification.

For the Intel dataset, since the original images are free
from noise and blur, we first convolved them with a Gaus-
sian kernel to blur the images, and then added Gaussian
noise to create a suitable training set. In the case of the
GoPro dataset, the blur is inherent and naturally present
in the dataset, so we only needed to manually add Gaussian
noise.

4.2 Experiment across different system structures on
GoPro
We conducted a comprehensive series of experiments on
different model structures and training methods in the
frequency doamin on the GoPro dataset, including the fol-
lowing four experimental settings:

a) Only U-Net: Train one basic U-Net on a dataset of
noisy and blurry images, and measure the performance of
U-Net on general image reconstruction in the frequency
domain.
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Fig. 3. Attention R2U-Net structure.

Fig. 4. 3-stages training pipeline.

Fig. 5. FA-UNet can denoise and deblur images in detail.

b) Only Attention R2U-Net: Train one Attention R2U-
Net on a dataset of noisy and blurry image, and measure
the performance of Attention R2U-Net on general image
reconstruction in the frequency domain.

c) FA-UNet without pertaining Deblur Net: First pre-
train the Denoise Net on noisy-only images, then train FA-
UNet end-to-end on both noisy and blurry images. In other
words, we implemented Stage 1 and Stage 3 in Figure 4
based on the hypothesis that the blur patterns in the blur-

only images differ from those in the images after denoising,
thereby making the effect of pretraining the Deblur Net
uncertain.

d) FA-UNet: Train the FA-UNet following the three-stage
process described in section 3.3.

The performance of image reconstruction was quantified
using the Peak Signal-to-Noise Ratio (PSNR) metric. The
results of different experimental settings are shown in Table
1.
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Fig. 6. Comparison between FA-UNet, Denoise Net and Deblur Net. From left to right, each column includes the original high-quality images, noisy
and blurry images, images after being processed by the Denoise Net, images after being processes by the Denoise Net, and images after being
processed by FA-UNet.

Table 1: PSNRs of different experimental settings.
method PSNR

Unprocessed images 13.351
Only U-Net 22.246

Only Attention R2U-Net 22.637
FA-UNet without pertaining Deblur Net 22.872

FA-UNet 22.937

The PSNR of the original images serves as a baseline
and represents the quality of the images before processing.
All the methods substantially increase the PSNR compared
to the baseline, indicating the effectiveness of image recon-
struction in the frequency domain. The Attention R2U-Net
yields a PSNR higher than the U-Net, which suggests that
the attention mechanisms and R2U-Net structure provide
improvement in image reconstruction quality over the basic
U-Net. The PSNRs of FA-UNet both with and without
pretraining the Deblur Net are higher than those from
using a single net. This indicates that separating the task of
denoising and deblurring task is more effective. Moreover,
pretraining the Deblur Net yields a slightly higher PSNR.
Another thing worth mentioning is that the images recon-
structed using FA-UNet exhibit a slight blurriness. This may
suggest that the deblurring ability of UNet-based in the
frequency domain is not good enough.

4.3 Experiment in different datasets: GoPro and Intel
Image Classification

Next, we applied two different image datasets with dis-
tinct characteristics to our FA-Unet to further evaluate its
performance. GoPro dataset holds higher resolution images
and most of them contain the street scenes with com-
plex environmental detail. On the other hand, Intel Image
Cla‘ssification dataset includes smaller size images with
150*150 resolution and their scene contain less objects.

Through experiments, for GoPro dataset, our system
achieves average validation PSNR of 22.937. For Intel Image
Classification dataset, average validation PSNR of 23.092
is achieved. Under different image datasets with various
characteristics, our system maintains stable performance
which suggests it can be applied to image denoising and
deblurring tasks in diverse scenarios.

From Figure 7, we can virtually observe that our system
performs similarly on both large-complex images and small-
simple images. Again, in both cases, the resulting photos
are a little bit blurry. However, during experiment, we find
out that if the input photos only contain Gaussian blur, our
system can achieve better deblurring performance, as shown
in Figure 8.

4.4 Experiment between spatial approach and fre-
quency approach

Finally, we conducted a comparative study between the
traditional spatial domain deblurring approach, exemplified
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Fig. 7. Example Image Denoising and Deblurring Result on GoPro and Intel Image Classification datasets.

Fig. 8. Image Deburring Result on Photo only Contains Gaussian Blur

by UNet, and our proposed FA-UNet method which oper-
ates in the frequency domain. Our result of this experiment
is in Fig. 8. Despite FA-UNet exhibiting a slightly lower Peak
Signal-to-Noise Ratio (PSNR) in quantitative evaluations,
qualitative assessments paint a different picture. Visual in-
spection reveals that images processed by FA-UNet retain a
richer set of details, especially textural information that is of-
ten lost in conventional deblurring. This not only highlights
the subjective improvement in image quality as perceived
by the human eye but also underscores the significance of
incorporating frequency domain information—a testament
to the efficacy of FA-UNet in preserving essential image
characteristics.

5 CONCLUSION

In conclusion, our project presents a novel approach for
image denoising and deblurring, focusing on frequency do-
main processing. We have successfully implemented and in-
tegrated frequency-domain image preprocessing and post-
processing methods to fully transfer image information into

frequency domain and back. A key feature of our approach
is the use of a UNet architecture enhanced with attention
mechanisms, specifically tailored for handling tensors in
the frequency domain. This method not only preserves the
integrity of the image but also significantly improves the
denoising and deblurring process.

However, it is important to note that this project rep-
resents just the beginning of exploring the vast potential
of frequency domain image processing. Future improve-
ments could include leveraging the symmetric properties
of the Fast Fourier Transform (FFT) results to reduce tensor
sizes, enhancing computational efficiency, and further refin-
ing image quality. Additionally, designing neural networks
specifically tailored for the frequency domain could also
significantly boost performance by optimizing processing
techniques for this unique context. In essence, our work
lays the foundation for a promising new solution in image
processing, one with substantial room for advancement and
optimization.
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Fig. 9. Comparison between UNet in spatial domain and FA-UNet.
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APPENDIX A
L2 Norm for Denoising: The L2 norm is adept at handling
Gaussian noise, commonly found in noisy images. By focus-
ing on the squared differences, it effectively reduces overall
noise while maintaining image integrity. This choice is ideal
for denoising, as it smooths out random variations without
significantly altering the core image structure.

L1 Norm for Deblurring: On the other hand, L1 norm ex-
cels in preserving edges and finer details, which are crucial
in deblurring tasks. It’s less sensitive to outliers, a common
challenge in deblurring, enabling the model to focus on the
essential elements like edges and textures without being
misled by extreme pixel values.
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