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Abstract—This article focuses on the impact of dataset imbalance on the results of the ResNet18 model and explores methods to
address and mitigate imbalance. For the two types of imbalance in the Fitzpatrick dataset, we employed sampling, simple
augmentation, and DCGAN augmentation to address the imbalance and enhance accuracy and efficiency. Additionally, we examined
the data augmentation effects of DCGAN on both Fitzpatrick and HAM10000 datasets. Based on our experiment results, both simple
and DCGAN augmentation have proven to be effective to mitigate bias in the model.
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1 INTRODUCTION

USPICIOUS skin conditions necessitate thorough medical
S examinations, as they may evolve into severe forms of
skin cancer. Timely and accurate diagnosis is crucial, as early
detection significantly improves the survival rates of skin
cancer patients. To address the shortage of dermatology
experts and expedite the diagnostic process, many health-
care institutions have begun integrating advanced machine
learning (ML) techniques, particularly convolutional neural
networks (CNNs), into their diagnostic workflows.

While these ML models have greatly aided medical
professionals and yielded relatively accurate results for a
broad patient demographic, a critical issue has surfaced.
These models often reflect biases inherent in their training
data, leading to potential inaccuracies and disparities in
disease detection. A notable concern is the predominance
of light skin tones in skin imaging datasets, which skews
the effectiveness of these diagnostic models, especially for
individuals with darker skin tones.

Our project specifically focuses on analyzing the Fitz-
patrick17k dataset.A stark imbalance is evident within this
dataset: the two lightest skin tones comprise nearly 40%
of the data, whereas the darkest two skin tones represent
a mere 13%, which can significantly impair the cancer
detection accuracy for darker-skinned individuals. Imbal-
ance also arises from label within the data. Fitzpatrick17k
contains disproportionate number of non-cancerous cases,
often exceeding 70% of the dataset. This imbalance can
significantly influence the model’s accuracy and fairness.

The primary aim is to confront these challenges directly.
By thoroughly examining and addressing potential imbal-
ances in the dataset, we intend to diminish the effects of
these imbalances on the model’s outcomes. Our goal is to
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rectify this imbalance within the dataset and, subsequently,
enhance the accuracy of our models.

In our project, we implemented a variety of sampling
and data augmentation techniques to address the imbalance
in the dataset. Our approach included basic augmentation
strategies like flipping and rotating images, as well as em-
ploying advanced machine learning techniques, specifically
Generative Adversarial Networks (GANSs), for image gen-
eration. The outcomes of these experiments demonstrated
that both the simple and sophisticated techniques effectively
reduced bias in the model. Additionally, they delivered com-
mendable performance when compared to results obtained
using the imbalanced dataset.

2 RELATED WORK

Our project delves into racial disparities in dermatological
conditions, drawing upon several key studies. A notable
one, “The Ongoing Racial Disparities in Melanoma: An
Analysis of the Surveillance, Epidemiology, and End Re-
sults Database (1975-2016),” provides essential insights into
the growing melanoma-specific survival (MSS) disparities
among minority groups compared to non-Hispanic whites
(NHWs) since 2000 [1]. This study underscores the urgent
need for better post-diagnosis management in minority
populations, aligning closely with our project’s focus.

Further contributing to our understanding is the system-
atic review, “Racial Disparities in Skin Tone Representation
of Dermatomyositis Rashes.” This review highlights the sig-
nificant underrepresentation of darker skin tones in medical
educational materials, with a majority of dermatomyositis
rash images depicting very light skin. [2] This gap in re-
sources underscores the diagnostic and treatment challenges
for darker-skinned individuals and reinforces the necessity
of our research in promoting inclusivity in dermatological
education and practice.



Additionally, “"Common Dermatologic Disorders in Skin
of Color: A Comparative Practice Survey” examines vari-
ations in skin disease diagnoses across races and ethnici-
ties [3]. This study illuminates how genetic, environmental,
socio-economic, and cultural factors contribute to these dis-
parities. Its emphasis on the need for comprehensive data
on skin conditions in diverse populations resonates with
our project’s aim to expand dermatological knowledge and
ensure equitable healthcare access.

In shaping our methodology, we were inspired by
Frid-Adar et al.’s use of Generative Adversarial Networks
(GANSs) to augment CNN performance in medical image
classification. Their work [4], "GAN-based Synthetic Medi-
cal Image Augmentation for increased CNN Performance in
Liver Lesion Classification”, sets a precedent for employing
GANSs to create high-quality synthetic images. This tech-
nique was pivotal in applying GAN models to the Fitz-
patrick and HAM10000 datasets to counteract data imbal-
ances. The synthetic images generated by GANs enabled us
to expand our training dataset, leading to a more balanced
data distribution and enhancing the accuracy and fairness
of skin disease detection. [5]

Radford, Metz, and Chintala’s development of Deep
Convolutional Generative Adversarial Networks (DC-
GAN:Ss) further informed our approach. Their 2016 study
demonstrates DCGANSs as an effective unsupervised learn-
ing framework, capable of learning detailed features from
images [6]. The architectural constraints they proposed for
DCGANSs have improved training stability and informed
our use of GANs for dataset augmentation in skin disease
classification, addressing both imbalances and enhancing
model accuracy.

3 DATASET
3.1 Fitzpatrick17k

In this project, we use the dataset Fitzpatrick17k [7] to eval-
uate the performance of various augmentation techniques.
The Fitzpatrickl7k, consisting of 16,577 clinical images, is
collected from DermaAmin and Atlas Dermatologico, with
additional Fitzpatrick scale labels [8]. The Fitzpatrick scale
is a six-point measurement for sun reactivity of skin phe-
notype, and used in many research to assess the fairness of
models or algorithms (it is also used for emoji skin colors).

The dataset includes labels for over 100 skin condi-
tions, which are then categorized into nine subgroups, en-
compassing inflammatory, genodermatoses, and malignant
epidermal conditions. These are further consolidated into
three overarching categories: benign cancer, malignant can-
cer, and non-neoplastic (non-cancerous). To simplify and
highlight the potential impact of biases within the dataset
on model performance, we will combine the two types of
cancers to have a binary label: cancerous and non-cancerous.

Through an analysis of the dataset, we identified some
certain issues, including two types of extremely imbalance
and uneven distribution in the content of the images.

1) Imbalance in Fitzpatrick scales
From figure 1.1, we observe a highly uneven distri-
bution of the dataset across different scales. While
over 66.74% of images fall into the Fitzpatrick LII,
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and III scales, the V and VI scales only account for
13.08%. We speculate that due to the training data
imbalance and lack of representation for individu-
als with darker skin tones, the models will inherit
this bias and may exhibit poor performance when
applied to this demographic [9].

2) Imbalance in labels
From figure 1.2, in the distribution of the three
labels, we also identified a similar imbalance issue.
The "non-neoplastic” category is overly represented
in the dataset, constituting over 70% in all six scales.
In contrast, the proportions of the other two labels
are significantly smaller, particularly for the "be-
nign” label. Such an imbalance can lead to subop-
timal learning outcomes for the model, as a model
might achieve decent results without truly learning
from the dataset and regarding minority as outliers
[10]. Nevertheless, in the context of skin cancer
diagnosis, correctly identifying those people with
cancers is the primary concern. With the learned
model shows bias towards the predominant class,
the non-cancerous patients, it may neglect the mi-
nority class, which defies our original purpose [11].
To make our lives easier and mitigate the imbalance
to some extent, we combined labels ‘benign’ and
‘malignant” into one label.

3) Uneven distribution of images
As shown in Figure 1.3, we provide sample images
for each Fitzpatrick scale. From these images, we
can observe that the patterns in this dataset do
not follow a similar distribution — patients’ affected
areas are widely distributed, including hands, faces,
small patches of skin, irrelevant backgrounds, and
so on. This issue is persistent within each subgroup
of the dataset. These noticeable content variations
can introduce instability in the model. [12] Such a
dataset poses a significant challenge for GAN, mak-
ing it difficult to generate high-quality fake images
[15].

3.2 HAM10000

Because of the third limitation in Fitzpatrick17k dataset, we
introduced the use of another dataset, HAM10000, to assess
the capability of using GANSs for data augmentation.

HAM10000(“Human Against Machine with 10000 train-
ing images”) consists of 10015 dermatoscopic images which
are released as a training set for academic machine learn-
ing purposes and are publicly available through the ISIC
archive. [14]

As shown in Figure 2, we present some images from
the HAM10000 dataset (with subgroup of Male with
melanoma). In contrast to Figure 1.3, we can observe the
advantage of data consistency in HAM1000 ——images
in HAM10000 are all focused on displaying small patches
of skin, in other words, images in HAM10000 adhering
to a similar distribution within each subgroup, which is
advantageous for GANSs [13] to generate high-quality fake
images based on the training set.

To demonstrate the benefits of Generative Adversarial
Networks (GANSs) in data augmentation, our study concen-
trated on four subgroups characterized by gender (Male or



Histogram of Fitzpatrick Skin Types Distribution of Skin C

by Skin Tone

5000 4808

Percentage

~ N & a
« e < « & prd

Fitzpatrick Scale

T

& - ~ - -
fitzpatrick

Figl.1 imbalance in scales

Fig. 1. Three main issues in Fitzpatrick17k dataset

Fig. 2. Images from HAM10000 - male with Melanoma

Female) and skin conditions (Melanoma, a malignant skin
cancer, and Benign Keratosis, a benign condition). Figure 3
reveals a slight gender imbalance in our dataset, whereas
the distribution between two cancers is almost equal.
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4 PROPOSED METHOD
4.1 ResNet

Residual Network [15], or ResNet, is a type of CNNs that
aims to solve problems by training very deep networks.
The authors who introduced ResNet argued that adding
more layers onto a shallow network should not degrade
the model performance. They proposed the method to use

Figl.2 imbalance in labels

100 Condition
1000 - bk

=43 Experiment Design

Condition
= benign
= malignant
N non-neoplastic

Figl.3 sample images from the dataset

residual blocks, which allows the inputs of a given block to
be added to its outputs. This identity mapping makes sure
the added layers do not degrade the performance. More-
over, instead of learning directly the underlying mapping of
interests (H(z)), the model learns the difference or residual
of the mapping (F(z) = H(z) — z).

4.2 GAN

Generative Adversarial Networks [16], or GANSs, is a class of
unsupervised learning algorithm. It consists of two neural
networks, one called generator and another discriminator.
During the training, with inputs of random noise, the gen-
erator produces fake images that indistinguishable from the
real images, whereas the discriminator aims to distinguish
between fake and real images. Its structure is illustrated in
Fig 6. The idea behind the algorithm is a zero-sum game. If
the generator improves and outputs more realistic images
(or images more similar to the real images), the discrimina-
tor will improve its ability to identify the fake and real. In
the experiment, we use DCGAN, which specifically requires
convolutional layers in both generator and discriminator.

Upon recognizing two principal forms of imbalance in the
Fitzpatrick dataset — specifically, the underrepresentation
of certain skin tones and disparities in labeling — we hy-
pothesize that rectifying these imbalances will significantly
narrow the accuracy gap across different groups.

To address these issues, we have developed 2 different
kinds of methods: sampling and data augmentation, aimed
at mitigating these disparities. We input the processed
dataset into the ResNetl8 model [15] and then compare
the results with the baseline model using accuracy as the
evaluation metric.

The dataset was divided into training and testing sets
using an 80:20 split ratio.

4.4 Baseline

First of all, the unprocessed Fitzpatrick training dataset is
directly input into the ResNet18 model as Model 1, serving
as a baseline for comparison.

With data size of 12809



4.5 Sampling

For two imbalances, we performed different sampling
strategies on the dataset, constructing models tailored to
address specific imbalance scenarios. These models were
then compared against the baseline model for evaluation.

1) Model 2: Adjusting Fitzpatrick Scales Imbalance
We identify the least represented skin type in the
six-point Fitzpatrick scale, which in this case is
skin type VI with 508 samples. We then equalize
the sample size across all skin types by randomly
reducing the number of samples in the other five
categories to match that of skin type VL
With data size of 3096

2) Model 3: Adjusting Label Imbalance
For simplicity, we reclassify the dataset into two
groups: cancerous (encompassing both benign and
malignant cancers) and non-cancerous. With ap-
proximately 75% of samples labeled as non-
cancerous, we randomly reduce this group to equal-
ize the count with the cancerous group.

With data size of 6838

3) Model 4: Combining Adjustments for Two Imbal-
ances
We apply both Method 2 and Method 3. The dataset
is same as the reduced data from Method 3, and
then it is further divided according to the six-point
Fitzpatrick scale, resulting in 6 groups. We then
adjust the sample size in each group to match the
group with the lowest sample count, which is Fitz-
patrick VL
With data size of 1440

The purpose of these methodologies is to establish balance
in the dataset. Nevertheless, although undersampling can
create balanced data, the dataset inevitably decreases in size,
which is not desired. An ideal dataset should be balanced
in both Fitzpatrick and labels, and contain a reasonable
number of data points.

4.6 Data Augmentation

With the empirical evidence suggesting that large, balanced
data yields considerably better results, our next objective
is to expand the dataset. This expansion aims to enhance
the accuracy of our models by enlarging the dataset and
maintaining a balanced representation in terms of skin color
and labeling.

To further enhance the dataset, we employed two data
augmentation methods on 3 subgroups: scale V with label
1 (F5b1), scale VI with label 1 (F6b1l) and scale VI with
label 0 (F6b0), to expand the database, aiming for improved
results. We chose these 3 subgroups since they are signifi-
cantly smaller than others. Here is the procession flowchart
in figure 4.

4.6.1 Simple Augmentation

Model 5: With data size of 6396

Basic techniques such as flipping and rotation are applied to
the training dataset. We used simple augmentation to gen-
erate new images for the three subgroups with the smallest
quantities mentioned above —— (F5b1), (F6b1), and (F6b0).

Augmentation

Fig. 4. Data Augmentation procession flowchart

The number of images before and after generation is shown
in Table 1.

|| F5b1 Fébl Féb0 F5b0  other subgroups
# images before NA
# images generated 492 581 433 0 NA

H 246 83 433 533
|

sampling 533

TABLE 1
number of new images generated by simple augmentation methods

Subgroup (£5b0) comprises 533 data points, the smallest
number among the subgroups that do not require augmen-
tation. The number 533 is set to be a threshold.

Since the other 8 subgroups contain more images, we
randomly sample them to match the threshold to achieve a
balance in the dataset.

After generating new images, using the quantity of F5b0
as the baseline, we sampled 533 images from each of the 12
subgroups. The final dataset consists of 6396 images, which
is closest to training set used in the Model 3. We then input
this dataset into the ResNet18 network to obtain Model 5.

Here are some samples of new images generated by
simple augmentation methods in Figure 5.

Augmented 1

Fig. 5. data augmentation by simple methods

4.6.2 Synthetic Photo Generation

In contrast to simple augmentation, which involves varia-
tions of the same image, we aimed to expand our dataset
with distinct images. We opted to use DCGAN to generate
new images, and the learning process of this model is
illustrated in the following figure 6.

The strategy for applying DCGAN on the Fitzpatrick17k
dataset, including the number of generated images, aligns
with that of simple augmentation.
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Fig. 6. How GANs generate new fake images

However, due to the third limitation of this dataset —
Inconsistent Image Distribution, the performance of DC-
GAN on the Fitzpatrick is unsatisfactory. Thus, we also
conducted tests on the performance of DCGAN as a data
augmentation technique using the HAM10000 dataset. In
HAM10000 dataset, we chose genders and disease labels as
a scenario where imbalance might occur.

1)

2)

3)

Model 1: Baseline Model

From the earlier description of the HAM10000
dataset, we can infer that, in the gender and labels,
the dataset itself is relatively balanced. Therefore,
we used the original balanced data as input for
ResNetl18, and the obtained results serve as the
baseline for this dataset.

With data size of 1761

Model 2: Imbalance in gender

To assess the improvement in model performance
through data augmentation using DCGAN later,
we artificially created an imbalance scenario. We
randomly sampled and removed 70% of male ex-
amples, thus generating an imbalanced dataset with
uneven male and female representation, doubling
the difference between the two gender groups. This
imbalanced dataset was then used as input for
ResNet18.

With data size of 1027

Model 3: Rebalancing through DCGAN

We trained DCGAN to generate fake images with
labels (for example, using images of ‘male with
melanoma’ during training to generate images la-
beled as both ‘male’” and ‘melanoma’). These gen-
erated images were then incorporated back into
the dataset. Through this process, we obtained a
balanced dataset once again.

With data size of 1727

5 EXPERIMENTAL RESULTS

We used accuracy as our metric for evaluation. For the
Fitzpatrick dataset, we provide accuracy scores for differ-
ent models based on the Fitzpatrick scales. Regarding the
HAM10000 dataset, we present accuracy scores for different
models separately for each gender.

5.1

Fitzpatrick

The accuracy scores are shown in table2.

|| Fitzpatrick I I I v v VI

Baseline

Modell || 0.7066 0.7141 0.7224 0.7629 0.8053  0.8067
Sampling

Model2 0.6820 0.6885 0.7066 0.7594 0.8020 0.8151

Model3 0.7459 0.7357  0.7476  0.7825 0.8119  0.8319

Model4 0.7082 0.6988 0.7224 07415 0.7789  0.7983

Data Augmentation

Model5 || 0.7672 0.7408 0.7697 0.7736 0.8284 0.8152

TABLE 2

Accuracy Across Different Fitzpatrick Scales for Various Models

Model 1: Baseline Model

This model’s performance is consistent with the
proportions of non-cancerous cases in the dataset.
For example, for Fitzpatrick VI, 83% images are
labelled as non-neoplastic, and other groups exhibit
similar behavior. This hints that its accuracy might
stem from predicting the majority class, rather than
learning the underlying patterns. The significant
variation in accuracy between skin types, exceeding
10%, and the large dataset size contribute to ineffi-
cient training.

Model 2: Adjusting Fitzpatrick Scales Imbalance
Despite being balanced in the Fitzpatrick scale, the
model 2 neither enhances accuracy nor reduces dis-
crepancy. Presumably, this could be attributed the
facts that (1) the dataset is reduced to a quarter of
its original size and (2) the imbalance in labels is
still present and has more significant impacts onto
the bias in the model. Resolving the Fitz imbalance
alone seems insufficient.

Model 3: Adjusting Label Imbalance

While Model 3 still shows the disparity across
the six Fitz scale, its performance has significantly
improved compared to previous models. Notably,
the current dataset is balanced in labels, so the
high accuracy indicated that the model has learned
the underlying pattern of images to some extent.
This supports our previous presumption that label
imbalance contributes more the bias in the model.
Moreover, the Model 3 is more efficient as it is
trained on a dataset that’s about half of the original
dataset and achieved enhanced performance.
Model 4: Adjustments for Two Imbalances

Model 4, balanced in both Fitzpatrick scale and
labels, does not show further performance improve-
ment. However, like Model 3, its balanced labels and
high accuracy indicate that the model is learning
image patterns instead of predicting the majority
class. It's important to consider that Model 4 was
trained on the smallest dataset, reduced to just 1440
data points (about 1/10th of the original size) due to
two phases of undersampling. This limited data size
might account for the slight drop in accuracy. But
this in turn shows the improved efficiency obtained
from balanced data.

Model 5: Simple Augmentation

We observed that the 4/6 of the accuracies in the



model are the highest among the five models and
the remaining 2 are comparable with the highest.
This underscores the effectiveness and capability
of simple augmentation. Notably, the discrepancy
across the different Fitz scale decreases to 5% from
10% in the baseline, supporting our hypothesis that
balance in dataset would reduce the performance
gap among the subgroups. Furthermore, it rein-
forces our previous notion that the while the balance
in data significantly influences model performance,
the data size (6396) is also a pivotal factor to con-
sider.

We attempted to apply DCGAN to the Fitzpatrick dataset;
however, as previously discussed, the limitations of this
dataset hindered DCGAN's ability to generate high-quality
fake images. Figure 7 are samples of fake images generated
by DCGAN using the Fitzpatrick dataset. Despite adjusting
the input real images dimensions to 128*128, the perfor-
mance remained subpar and unusable.

Fig. 7. Fake images generated by DCGAN based on Fitzpatrick dataset

5.2 HAM10000

1) Model 1
Model 1 was trained on the original dataset, which
is balanced in labels and shows only a mild gen-
der imbalance. According to the results in Table
2, this model does not exhibit gender bias in its
performance. In terms of label accuracies, while
the accuracy for Keratosis is not entirely satisfac-
tory, the model demonstrates high performance in
identifying Melanoma cases, a critical factor given
melanoma’s high fatality rate.

2) Model 2
The dataset for Model 2 was deliberately altered to
create a gender imbalance. As expected, the model
trained on this imbalanced data shows bias in its re-
sults, with a notable decrease in accuracy for males,
the minority group. Interestingly, label accuracies
are similar to Model 1, likely because the labels
remained balanced.

3) Model 3
By incorporating images generated by DCGAN, the
dataset achieves balance once again. Gender accura-
cies not only recover to levels comparable to Model
1, but also becomes more balanced. This outcome
highlights DCGAN’s advanced ability to expand
datasets, thereby enhancing model performance and
reducing bias, as seen in our study. In addition, the
label accuracies are still closer to their counterparts
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in Model 1 and 2. Again, it is likely that the labels
remained balanced throughout. It further reinforces
our notion discussed in Fitzpatrick results: imbal-
ance in labels appears to be more influential.

Fake Image

Y

Fig. 8. Fake images generated by DCGAN based on HAM10000 dataset

|| modell model2 model3 (with GAN)
Female 0.7029 0.6514 0.6971
Male 0.7105 0.5451 0.6616
Melanoma 0.8364 0.8551 0.8505
Benign Keratosis 0.5815 0.5639 0.5286
TABLE 3

Results of Augmentation on HAM10000 using DCGAN

6 CONCLUSION

The conclusion of our project underscores the pivotal role
of data diversity in developing fair and accurate machine
learning models for skin disease detection. Through a com-
parative analysis of five distinct models (baseline, sampling
and simple augmentation), we have determined that Model
5, with its data-augmented approach, stands out not only
by improving overall accuracy but also by significantly
reducing the discrepancy in performance across different
skin types.

By attempting DCGAN on two different datasets, we
found that while GANs can indeed effectively augment
the dataset by generating synthetic images similar to the
original ones, this method imposes higher requirements on
the dataset. It necessitates that the images in the dataset
follow a similar distribution.

This project illustrates the necessity of addressing both
quantity and variety of data to mitigate bias inherent in
dermatological diagnosis models. Our findings advocate
for the continued pursuit of inclusive and comprehensive
datasets that reflect the diversity of the real-world popula-
tion, ensuring that advancements in Al-driven diagnostics
benefit all individuals equitably.
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