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Abstract—This paper examines the concept of Arrow of Time(AoT) and it’s inclusion in video generation. Specifically, this study will
focus on ModelScopeT2V, a multi-modal text-to-video model that was released in 2023 by the Alibaba Group. By analyzing this state of
the art model, we aim to understand the current capabilities in video generation and creating temporally coherent content. Through
training which entailed developing a classifier, we evaluated the model’'s capacity in generating realistic videos in both forward and
reverse directions. While the model achieved success in producing realistic forward sequences, it faced shortcomings in generating
reverse content. This was verified by our experiments involving machine and human evaluators. Notably, this may be an issue with
recognition of reverse prompts and vocabulary. Further exploration, potentially incorporating elements like disciminators for AoT could
be beneficial. This research aims to contribute to the ongoing discourse on reliability and authenticity of Al generated content in various

sectors.

Index Terms—Arrow of Time(AoT), Video Classification, Text to Video Generation

1 INTRODUCTION

HE concept of the Arrow of Time (AoT), first proposed

by British astronomer Sir Arthur Stanley Eddington in
1928 in his work 'The Nature of the Physical World’ [1], is
a fundamental principle in the understanding of temporal
dynamics. Eddington’s AoT posits that the flow of time is
intrinsically unidirectional and irreversible [2]. A vivid illus-
tration of AoT can be seen in the asymmetry of events such
as a glass shattering (Figure 1), where the reconstitution of
the fragmented pieces into their original form is virtually
impossible.

Our research focuses on the implications of AoT in the
context of synthetic video generation, particularly through
the lens of multi-modal text-to-video conversion. Since 2022,
we have witnessed an explosive growth in text-to-image
technologies which have revolutionized the field of Al-
generated imagery [3]. This evolution has necessitated a
deeper understanding of the realism of Al-generated con-
tent, as discussed in studies like "Analysis of Appeal for
Realistic AI-Generated Photos’ [3]. Our study extends this
inquiry to text-to-video models, exploring their potential
impacts across various industries.

Videos are ubiquitous across numerous sectors. The ad-
vent of advanced text-to-video tools welcomes their inte-
gration into these domains, raising critical questions about
the authenticity and reliability of such content in relation
to AoT. In communication contexts, the correct sequencing
of events, guided by AoT, is crucial for accurate message
interpretation. Misrepresentation of AoT in instructional
videos, for instance, could lead to significant misunder-
standings. In the realm of social media, where concerns
about misinformation are rampant, inaccuracies in temporal
sequencing might exacerbate issues of trust and credibility.
On the other hand, if these models struggle to achieve AoT
prior to mass adoption, could it be used as a technique to
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classify real versus generated content. In the entertainment
industry, the use of these tools under constraints of time and
budget might result in content that savvy audiences could
perceive as unauthentic. Another intriguing application is in
gaming, where technologies like NVIDIA’s Deep Learning
Super Sampling (DLSS) rely on frame prediction for en-
hanced performance. The effectiveness of such technologies
hinges on the realistic portrayal of temporal progression
in Al-generated videos. While these technologies as far as
we know aren’t applied to videos yet, continued efforts to
upscale video frames is ongoing.

This paper examines the ModelScopeT2V model by Al-
ibaba Group, released in June 2023 with 1.7 billion pa-
rameters and available for testing on the Hugging Face
platform [4]. While other leading Al research entities like
Google and Meta have announced their own text-to-video
models, their accessibility remains limited. Despite known
limitations of ModelScopeT2V, including its inability to
produce film-quality outputs and realistic representations
of people and events [4], our analysis aims to assess its
current capabilities. Understanding these limitations is vital
for future enhancements and potential applications in the
areas previously mentioned.

2 RELATED WORK

In understanding and applying the Arrow of Time (AoT)
to video analysis, we look at several pivotal studies. In
2014, ”Seeing the Arrow of Time” explored this study
by utilizing a dataset of YouTube videos, predominantly
featuring physics-related content such as gravity, friction,
and entropy, amongst others [6]. This study carefully se-
lected 125 forward-played videos and 25 reverse-played
videos, ensuring optimal conditions like good lighting and
minimal camera movement or shake [6]. The researchers
employed optical flow techniques to generate motion-patch
descriptors, termed ‘flow words’ Through the application of



Fig. 1: Sequence of a glass shattering demonstrating the
Arrow of Time [5]

Support Vector Machines (SVM), they achieved remarkable
classification accuracies of 90%, 77%, and 75% on different
dataset partitions [6].

The 2018 paper “Learning and Using the Arrow of
Time” delved deeper into the classification of videos, par-
ticularly aimed to extract insights about the visual world
while circumventing artificial cues [7]. It expanded upon
the 2014 study’s methodology, which had a strong AoT
emphasis but was limited to a smaller, specialized dataset
[7]. The researchers implemented a convolutional neural
network (convnet) architecture, utilizing optical flows and
training the model end-to-end on three diverse datasets
[7]. To enhance the authenticity of their experiment, they
meticulously removed artificial elements like black bars and
stabilized camera motion. Their model demonstrated an
accuracy of 76% on the Flickr dataset, 72% on Kinetrics, and
interestingly, human participants achieved an accuracy of
80% [7].

More recent advancements in this field came with the
2021 study "ArrowGAN: Learning to Generate Videos by
Learning Arrow of Time” [8]. This research introduced the
concept of an AoT discriminator, named Arrow-D, within
the framework of Generative Adversarial Networks (GANSs)
for video generation. The objective was to enable the video
GANSs to better comprehend the AoT through the integra-
tion of the Arrow-D discriminator [8]. The discriminator
utilized 3D convolutional networks to refine its perfor-
mance. The results showed marked improvements in video
generation quality across all datasets with the addition of
the Arrow-D discriminator [8].

3 PROPOSED METHOD

To assess ModelScopeT2V’s capacity for grasping the Ar-
row of Time (AoT), it is imperative that the model not
only generate realistic reverse videos in response to reverse
prompts but also that its outputs exhibit a discernible tem-
poral direction [4]. Our classifier serves as a critical tool
in our methodology, enabling us to evaluate the videos
generated by ModelScopeT2V. By applying this classifier
to the model’s outputs, we can draw informed conclusions
regarding ModelScopeT2V’s proficiency in replicating both
forward and reverse temporal sequences.

3.1 Training the classifier

Initially, we explored datasets such as 'Moment in Time” and
"Hollywood?2’ [9] [10], which encompassed a wide array of

Fig. 2: Sequence of 10 basic frames

actions. The architectures considered included both 2D and
3D convolutional networks, as indicated in the related liter-
ature [7] [8]. However, these datasets presented challenges
for our models, primarily due to the substantial variation in
camera motion and perspectives, which proved difficult for
the architectures to interpret accurately given the covariate
shift. Since the text-to-video model would be generating
a substantial volume of videos, extensive pre-processing
would be computationally expensive for this analysis. Con-
sequently, there was a need for a dataset that inherently
offered stable camera motion and consistent perspectives.

To gauge the capability of our chosen architecture we
conducted a basic validation test. This test involved creat-
ing a sequence, as depicted in Figure 2, featuring squares
moving from left to right. Ultimately, we theorized that
the model should at least be able to comprehend this basic
movement. This approach allowed us to identify any foun-
dational deficiencies in the model’s learning process, which
could then be addressed through the addition of layers or
the optimization of hyperparameters, thereby enhancing the
model’s capacity to analyze more intricate motion patterns
in real-world scenarios.

We found a new model capable of achieving high ac-
curacy on the basic motion sequences, following training
on a dataset comprising 1000 sets. The next step involved
identifying an dataset that featured minimal camera motion.
The decision to avoid eliminating artificial cues, stabilizing
camera motion, and utilizing optical flows [7] was driven by
our goal to ensure a high degree of consistency between the
training data and the application environment, while also
aiming to minimize computational expense.

After extensive research, we identified the UCF-101
dataset as an ideal match for our requirements [11]. This
dataset is well-categorized, featuring 95 distinct classes that
lend themselves to unique prompts, thereby facilitating a
deep dive into various types of motions. Additionally, UCF-
101 presented less variation in content and exhibited greater
camera stabilization compared to other datasets. This strate-
gic selection of UCF-101 played a pivotal role in enabling
us to rigorously test and refine our model, ensuring its
effectiveness and accuracy in the context of text-to-video
model analysis.

Our initial step in training the classifier commenced with
a specific category of videos, as illustrated in Figure 3. For
each video, we extracted 10 evenly spaced frames through-
out the video’s duration. This method diverged from other
literature, which often determined the frames per second
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Fig. 3: Preprocessing of a Video

(FPS) during preprocessing to ensure a consistent interval
between frames [7]. Subsequently, each frame was resized
to a standard dimension of 224x224 pixels to align with the
input requirements of our model. Following this, we applied
various data augmentations, including random horizontal
flips, color jitter adjustments, and normalization.

The architecture of our model was composed of a pre-
trained ResNet 18, average pooling followed by an LSTM
(Long Short-Term Memory) network, and a linear layer. We
chose ResNet 18 for its proven efficacy in image classifica-
tion, utilizing it to extract features from each frame [12]. By
maintaining the original RGB format, size, and normalized
values of each frame, we were able to leverage the benefits
of the network’s pre-trained state. The extracted features
from each frame were then fed into the LSTM, which was
trained so that the final hidden layer output from the 10th
frame was used by the linear layer to classify the entire
video.

Crucially, each video underwent dual classification: once
in its original, forward direction and then again in reverse,
after inverting the sequence of frames. This approach was
designed to compel the model to focus on the motion
characteristics distinguishing the two classifications, despite
the individual frames possessing identical features. This
methodology in Figure 4 aimed to deepen the model’s
understanding of motion as a key discriminator in temporal
sequences.

3.2 Analysis

To effectively evaluate the performance of ModelScopeT2V
videos, it was essential to establish specific criteria for gener-
ating these videos. Considering that the model was trained
on UCF-101, we decided to align video prompts with it’s
categories. Due to the time-intensive nature of video gen-
eration, we opted for the model’s simplest configuration,
setting it to 25 inference steps and limiting it to 16 frames
per video [13].

Initial experiments with ModelScopeT2V revealed a high
sensitivity to the choice of prompt words. Given these
constraints, producing a large volume of videos across all 95
categories was impractical. Therefore, our strategy pivoted
to four videos for each category: two depicting forward
motion and two illustrating reverse motion. To differentiate
between the two, prompts for reverse videos included the
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Fig. 4: Model Architecture

phrase ”in reverse” at the end or “Reverse” at the begin-
ning, while forward videos were prompted either neutrally,
without any time cue, or with the word “forward” at the
end.

We examined top five and bottom five categories in
terms of classification accuracy. We then planned to test
five different token lengths for prompts in forward and
reverse directions, using the same prompt for each length
within a category, resulting in a total of 10 unique videos per
category. These prompts were to be generated using a Large
Language Model (LLM), specifically GPT-4, allowing us to
investigate the impact of prompt length on video quality
and relevance.

In a more comprehensive approach, we aimed to utilize
ModelScopeT2V’s maximum token length of 77 for prompts
[4]. From our initial experiment, we selected 15 categories:
the top five, five chance, and the bottom five based on
classification performance. For each category, we planned
to create prompts at five different token lengths: 4, 10,
20, 40, and 70. We would generate 10 unique prompts for
each length and category, ensuring varied vocabulary to
counteract the model’s sensitivity. Again, these prompts
would be crafted using an LLM. This strategy was designed
to provide insights into the effects of prompting and vocab-
ulary variety on video generation.

3.2.1 Fine-Tuning the Classifier

Implementing the classifier trained on the UCF-101 dataset
directly on videos produced by ModelScopeT2V presented



a potential issue. The distinct distribution characteristics
of the videos from each source could hurt the classifier’s
accuracy. To address this discrepancy and potentially en-
hance classification accuracy, we proposed another experi-
ment where we would fine-tune our classifier using videos
generated by ModelScopeT2V.

The process of fine-tuning would serve a dual pur-
pose. Firstly, it would allow us to adapt our classifier to
the unique characteristics of the ModelScopeT2V-generated
videos. Secondly, it would enable us to verify whether our
classifier, once fine-tuned, could effectively discern temporal
properties in these videos. Specifically, we aimed to con-
firm if the forward videos generated by ModelScopeT2V,
when manually reversed, still aligned with the temporal
patterns observed in the UCF-101 training dataset. We did
this approach as it aligned with what we did for UCF-101
training. This would suggest that ModelScopeT2V was in-
deed producing videos with a discernible forward temporal
direction.

To execute this fine-tuning process, we planned to uti-
lize the forward videos generated from 15 selected cat-
egories. Post-fine-tuning, we would replicate the experi-
ments conducted previously, now employing our enhanced,
fine-tuned classifier. This iterative approach would provide
a more nuanced understanding of the classifier’s perfor-
mance.

3.2.2 Human Survey

To corroborate the findings from our classification model,
we planned to compare its performance with human judg-
ment. We selected two videos from each of the 15 categories,
one forward and one backward, to feature in a survey.
This survey would present videos with five different to-
ken lengths, equally divided between those correctly and
incorrectly classified by our model. The aim was to assess
whether human participants could more accurately predict
the temporal direction of these videos compared to random
chance. This comparison would serve as a crucial test of our
model’s validity.

4 EXPERIMENTAL RESULTS

We will now be going over the results of the experiments
mentioned in the Proposed Method Section.

4.0.1 Classifier Training Results

For the classifier training, we used a split of 19,909 video
sequences for training and 4,983 for testing, encompassing
both forward and reverse versions. We employed One Cycle
LR scheduler and an Adam optimizer with weight decay,
setting the maximum learning rate at le-4. Our results, as
detailed in Table 1, showed an accuracy of 86% on the train-
ing set and 78% on the test set. The classifier equally and
accurately categorized forward and backward videos, with
a slight tendency to misclassify backward videos as forward.
Although further enhancements through more sophisticated
models and larger datasets might improve accuracy, the
current 78% accuracy is satisfactory for our analysis of the
videos generated. This performance level serves as a base-
line for evaluating the quality of ModelScopeT2V’s output.

TABLE 1: Classifier Performance Metrics

Predicted Metric
Actual Backward Forward
Backward 1920 571 Precision for Backward: 0.7786
Forward 546 1946 Recall for Backward: 0.7708
F1 for Backward: 0.7747
Precision for Forward: 0.7731
Recall for Forward: 0.7809
F1 for Forward: 0.7770
Total Videos: 4983
Accuracy: 0.780

Analyzing the curated videos revealed performance pat-
terns across categories. Categories like Cliff Diving, Cricket
Bowling, Playing Sitar, Knitting, and Billiards showed high
performance. In contrast, categories like Lunges, Boxing
Speed Bag, Applying Eye Makeup, and Pizza Tossing fared
poorly. This outcome is encouraging, as the model struggles
mainly in areas with less obvious temporal progression.
Interestingly, it excels in Playing Sitar and Knitting, which
might be assumed to lack clear temporal markers, suggest-
ing a nuanced understanding of temporal sequences by the
model.

4.0.2 Generated Video Results
The first experiment we performed was on the manually cu-
rated 388 videos with 4 prompts per category, 2 in forward,

and 2 in reverse. The results from this experiment are shown
in Table 2.

TABLE 2: Experiment 1 Results

Predicted Metric
Actual Backward Forward
Backward 81 112 Precision for Backward: 0.554784
Forward 65 130 Recall for Backward: 0.419689
F1 for Backward: 0.477876
Precision for Forward: 0.537190
Recall for Forward: 0.66666
F1 for Forward: 0.59496
Total Videos: 388
Accuracy: 0.54

In our initial experiment, each category was represented
by an average of 4 videos. Aware of the potential limitations
of this small sample size for statistical significance, we
conducted a focused analysis on the 5 best and 5 worst-
performing categories, as detailed in Table 3. This targeted
approach aimed to determine if initial findings genuinely
reflected model performance or were merely artifacts of
the limited dataset. By analyzing these specific categories
with additional videos, we sought to draw more statistically
robust conclusions about the model’s capabilities.

One might contend that certain actions, by their very na-
ture, present challenges for maintaining a consistent arrow
of time, which could compromise the classifier’s accuracy.
However, our detailed analysis of the top 5 and bottom
5 categories reveals a nuanced picture. Out of these 10, 7
categories achieved an accuracy exceeding 60%, with only
3—mnamely TaiChi, and Military Parade—showing subpar



TABLE 3: Experiment 1 Category Accuracies

Categories Chosen = Forward Accuracy — Backward Accuracy

Fencing 0 0
Diving 50 0
Horse Riding 50 0
Cutting in Kitchen 0 0
Salsa Spin 100 100
Punch 100 100
Throw Discuss 100 100
Military Parade 100 100
Walking With Dog 100 100
Tai Chi 0 0

performance. Importantly, none fell below the 50% accuracy
threshold or were among the most problematic categories
for the classifier during training.

By selecting categories that span a broad spectrum of
arrow of time complexity, we can rigorously assess the
generator’s proficiency. If we chose categories with clear
defined arrow of time, the classifier might easily categorize
the videos, thus failing to adequately test the generator’s
capabilities. Our approach ensures that the generator is
challenged to produce videos that are not only classifiable
but also retain the temporal coherence.

Moving to the second experiment, we created 5 different
prompts for both forward and backward in each category,
and for each prompt we generated 10 videos. The results
are shown in Table 4. We see that the performance dipped
considerably, and far more videos are being classified as
forward, rather than backward.

TABLE 4: Experiment 2 Results

Predicted Metric
Actual Backward Forward
Backward 155 345 Precision for Backward: 0.4889
Forward 162 338 Recall for Backward: 0.31
F1 for Backward: 0.3794
Precision for Forward: 0.4948
Recall for Forward: 0.676
F1 for Forward: 0.5714
Total Videos: 1000
Accuracy: 0.49

TABLE 5: Experiment 2 Category Accuracies

Categories Forward Accuracy%  Backward Accuracy%
Fencing 66 34
Diving 64 34
Horse Riding 70 20
Cutting in Kitchen 80 10
Salsa Spin 62 42
Punch 70 28
Throw Discuss 62 30
Military Parade 66 38
Walking With Dog 72 30
Tai Chi 64 44

From Table 5, we can see that there is a significant discon-
nect between forward and backward classification. When
we take Cutting Kitchen which has the highest forward
accuracy and the worst backward accuracy and visualize
it with GradCAM Fig 5 and Fig 6, we see that the classifier

Fig. 6: Prompt: Preparing Ingredients by Cutting
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focuses in the same area of motion as forward [14]. This
suggests that the video’s motion itself may not be conclusive
enough to predict backward motion. We will look for this
pattern in our Experiment 3.

In our last experiment, we wanted to specifically see if
prompt length and prompt vocabulary made a significant
impact. As this experiment was more robust, we went back
to our experiment 1, and took 5 more categories that had
an even split in forward and backward accuracy. We would
now be using 10 different prompts for each of the 5 prompt
lengths.

We see from Fig 7, that a prompt length of 40 had the
highest accuracy. However, looking at the accuracy of the
forward and backward videos for token lengths of 40, we
continue to see poor reverse classification.



TABLE 6: Experiment 3 Results

TABLE 9: Fine Tuned Classifier on Experiment 1

Predicted Metric Predicted Metric
Actual Backward Forward Actual Backward Forward
Backward 233 517 Precision for Backward: 0.4844 Backward 98 95 Precision for Backward: 0.5355
Forward 248 502 Recall for Backward: 0.3106 Forward 85 110 Recall for Backward: 0.5077
F1 for Backward: 0.3785 F1 for Backward: 0.5212
Precision for Forward: 0.4926 Precision for Forward: 0.5365
Recall for Forward: 0.6693 Recall for Forward: 0.5641
F1 for Forward: 0.5675 F1 for Forward: 0.55
Total Videos: 1500 Total Videos: 388
Accuracy: 0.49 Accuracy: 0.54

TABLE 7: Experiment 3 Category Accuracies

TABLE 10: Fine Tuned Classifier on Experiment 2

Categories Forward Accuracy%  Backward Accuracy%
Fencing 68 26
Diving 66 36
Horse Riding 64 34
Cutting in Kitchen 74 28
Salsa Spin 66 30
Punch 70 28
Throw Discuss 68 36
Military Parade 70 24
Walking With Dog 64 28
Tai Chi 62 42
Kayaking 60 20
Basketball Dunking 72 32
Pole Vault 54 42
Surfing 74 40
BabyCrawling 72 28

Predicted Metric
Actual Backward Forward
Backward 225 275 Precision for Backward: 0.5939
Forward 192 308 Recall for Backward: 0.45
F1 for Backward: 0.4907
Precision for Forward: 0.5283
Recall for Forward: 0.616
F1 for Forward: 0.5687
Total Videos: 1000
Accuracy: 0.53

TABLE 11: Fine Tuned Classifier on Experiment 3

4.0.3 Fine-tuned Results

After our initial experiments, we noticed the classifier strug-
gled with reverse generated videos. To investigate, we fine-
tuned the classifier using the forward videos from experi-
ment 3, with a 70/30 split for training and testing. If the
test accuracy approaches our original results, it suggests
the forward videos possess a discernible temporal direction.
This is because, mirroring our approach with UCF-101, we
manually flipped these forward videos and labeled them as
reverse. Table 8 confirms this hypothesis, showing a 74%
accuracy, indicating that ModelScopeT2V’s forward videos
indeed have a temporal direction, as seen by the higher
accuracy in forward videos in earlier experiments.

TABLE 8: Fine Tuning Results

Predicted Metric
Actual Backward Forward
Backward 97 128 Precision for Backward: 0.6258
Forward 58 167 Recall for Backward: 0.4311
F1 for Backward: 0.5105
Precision for Forward: 0.5661
Recall for Forward: 0.7422
F1 for Forward: 0.6423
Total Videos: 450
Accuracy: 0.59

Predicted Metric
Actual Backward Forward
Backward 168 57 Precision for Backward: 0.7433
Forward 58 167 Recall for Backward: 0.7466
F1 for Backward: 0.7450
Precision for Forward: 0.7455
Recall for Forward: 0.7422
F1 for Forward: 0.7438
Total Videos: 450
Accuracy: 0.74

We see that in Table 9,10 and 11 we repeat the results of
our earlier tests, now with our fine-tuned model.

Now you might notice that our total videos we used for
Experiment 3 dropped. That’s because we were limited by
the test videos we had available in the forward direction.
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Fig. 8: Comparison of Model Acccuracies on various Exper-
iments

This is because we already fine-tuned the model on train
videos, which was a large portion of the experiment 3
videos. As a result, to keep relative proportion we used
the same number of test videos we had for forward as
backward. Unfortunately, despite the increase in accuracy
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we continue to see the same pattern of low classification
accuracy on reverse prompted videos. This is a strong indi-
cation, that due to the varied amount of prompts, categories
and prompt lengths used, the ModelScopeT2V struggles
to make reverse videos when asked to do so with reverse
prompts. However, it does make reasonable forward videos
that follow AoT.

TABLE 12: Fine Tuned Model Experiment 3 Results

Categories Forward Accuracy%  Backward Accuracy%
Fencing 60 40
Diving 87 67
Horse Riding 80 50
Cutting in Kitchen 73 25
Salsa Spin 73 38
Punch 60 38
Throw Discuss 67 39
Military Parade 80 43
Walking With Dog 93 50
Tai Chi 80 42
Kayaking 53 44
Basketball Dunking 80 50
Pole Vault 60 39
Surfing 100 47
BabyCrawling 67 42

Definitive conclusions about the impact of token length
remained elusive. Our findings suggest that larger token
descriptions generally perform better than shorter ones,
though the optimal length varies by application. In the
horse riding category, Figures 10 and 11 show backward
and forward prompts, respectively. Interestingly, while both
videos focus on the correct motion, Figure 10 is incorrectly
predicted as forward, whereas Figure 11 is accurate. For the
baby crawling category, Figure 12’s reverse prompt is cor-
rectly predicted, but Figure 13’s forward motion prediction
is wrong, possibly due to limited motion. This issue might
affect the reverse prompts’ accuracy, but since it should
equally impact forward videos, we conclude that reverse
prompts are not generated as accurately as forward ones.

4.0.4 Human Results

To validate the conclusions drawn by our classifier, we con-
ducted a survey with 30 videos, encompassing all 15 cate-
gories with an equal mix of forward and reverse videos. The
survey included 3 videos from each token length group. To

Fig. 10: Prompt: Traversing the landscape under a setting
sun, the horse and rider’s serene journey rewinds, the
peaceful evening light receding gently

Fig. 11: Prompt: Horse riding adventure, exploring trails
with enthusiasm and grace

Fig. 12: Prompt: In their home’s safe haven, the baby’s
crawling practice unfolds backward, each effort a display
of emerging strength, watched over by parents whose pride
remains evident in reverse

Fig. 13: Prompt: Baby’s first crawl, tiny fingers gripping the
soft carpet below



ensure a balanced evaluation, we included videos that were
both accurately and inaccurately labeled by our model. This
approach avoided biasing the survey towards the model’s
strengths or weaknesses. The results, as shown in Tables 13
and 14, largely aligned with the model’s performance. While
human accuracy was slightly higher, the difference was not
substantial. Notably, humans faced similar challenges in
correctly identifying the direction of reverse videos.

TABLE 13: Human Survey

Predicted Metric
Actual Backward Forward
Backward 5 10 Precision for Backward: 0.8333
Forward 1 14 Recall for Backward: 0.3333
F1 for Backward: 0.4761
Precision for Forward: 0.5833
Recall for Forward: 0.9333
F1 for Forward: 0.7179
Total Videos: 30
Accuracy: 0.63

4.0.5 Key Statistics

We first calculate the entropy for the backward and forward
sets for both humans and our fine-tuned model.
The entropy expression is:

H(X) == plx;)log, p(x;)
i
Results of the entropy score are in Table 14.

TABLE 14: Comparison of Entropy Scores, Cross-Entropy
Scores, and Chi-Square Values

Model E.Score  C-E.Score  Chi-Sq. Val.
Reg. Model 0.9056 1.09945 192.96

F. Tuned Model ~ 0.9303 1.0741 43.55
Human 0.72192 1.32195 -

As we fine-tuned our model, it became more cautious
when seeing the generated videos and classifying them,
whereas our original model without fine-tuning was slightly
more confident. Humans were more confident in their deci-
sions as expected, and this matches with the high accuracy
we observed in our results.

When we look at cross-entropy, we can use it to discover
how each method’s predictions align with the true distribu-
tion.

The cross-entropy expression is:

n
H(p,q) ==Y plx:)log, q(;)
i=1

Here, p(z) is our true probability distribution, and ¢(x)
is our predicted distribution.

What we see in these results is that both the regular and
fine-tuned models are different from the true distribution,
with the fine-tuned model performing slightly better; how-
ever, humans are by far the worst. This is somewhat counter-
intuitive as cross-entropy is typically a good measure of
model performance. However, in this case, humans had the
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best accuracy on all the videos. This suggests that, given the
high accuracy for forward videos, humans overwhelmingly
could not get close to the reverse prompt true distribution.
This aligns with our model’s performance, which also had
difficulty interpreting many reverse videos as forward.

The final metric we look at is the Chi-Square test, which
will tell us how statistically different each model is com-
pared to the true distribution.

The formula for this goodness of fit test is:

> (0: — E3)?
=Y 7

Since we have two classes, the degrees of freedom is 1.
The critical value at the 0.05 significance level is 3.841.

We can see that indeed, the fine-tuned model, with its
higher accuracy, is also statistically closer to the true dis-
tribution than the original model. For this particular table,
both model Chi Values can’t be directly compared due to
their different dataset sizes, however, both are higher than
the critical value.

5 CONCLUSION

In conclusion, we ran multiple tests to answer the ques-
tion does ModelScopeT2V understand the arrow of time.
While many aspects of the experiments could be optimized
including using a more accurate model, more test data,
and greater supervision of the video generation, the experi-
ments suggest that while ModelScopeT2V does understand
AoT when generating videos in forward time, however the
reverse isn’t true. Specifically, the reverse prompts used
for ModelScopeT2V do not reliably generate videos that
can are reversing an action. This was verified by our two
models and human trials. We recommend more through
investigation be performed to build on these results and
to look into adjusting the spatial temporal portion of the
generation model and increase training of model on reverse
vocabulary. Related work such as Arrow-D mentioned in the
relevant work could also be incorporated in some form to
improve this understanding of Arrow of Time at generation.
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