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Abstract

Deep learning-based inpainting models such as generative adversarial networks (GANs) and stable
diffusion offer state of the art generation of realistic content in complex scenes using contextual
surroundings. There exist, however, drawbacks for each method: GANs are difficult to train and often
fail to capture textures effectively ; Stable diffusion is prone to hallucinations. Conversely, classical patch-
based methods reportedly excel at replicating textural details but struggle with generating larger structurally
consistent content. We propose a hybrid approach using GAN and patch-based methods to leverage their
strengths and improve both structural and textural consistency. Preliminary results demonstrate that this
approach yields minor qualitative improvements in texture details, but the quantitative assessments, possibly
limited by the current metrics, remain inconclusive.

I. INTRODUCTION

Image inpainting is an area that has been actively
researched because of its many applications such as
image restoration (recovering damaged or missing
portions of an image), and photo editing(removing
unwanted objects). Several inpainting techniques
have been developed, ranging from deep learning-
based methods including stable diffusion, generative
adversarial networks (GANs), convolutional neu-
ral networks, (CNNs), to classical patch-based ap-
proaches. Each method has strengths and drawbacks
in inpainting textures, facial features, large masked
regions, and edge preservation [3].

While capable of generating highly realistic in-
painting, modern deep learning approaches face
several challenges. Neural networks are often con-
sidered black boxes with limited explainability [4].
The complexity of the inner workings of models
create difficulties when addressing specific issues.
For example, GANs are difficult to train and often
struggle with textural consistency [3]. Diffusion
models improve upon some of these weaknesses,
but are prone to hallucinations [2].

Patch-based techniques, now considered classi-
cal, have shown promises in inpainting repetitive
patterns such as grass, water, and architectural fea-
tures [5]. Additional benefit of these approaches

include same-image sourcing to potentially improve
textural consistency, no requirement for training,
and rule-based algorithms that are highly explain-
able and thus more intuitive for manual tuning and
modification. Drawbacks to the classical methods
include processing times and reliance on the avail-
ability of repeating textures and patterns [3].

We propose utilizing a combination of both
deep learning-based and classical patch-based ap-
proaches to complement the strengths of each tech-
nique and minimize their shortcomings. For exam-
ple, the ability of GANs in generating structurally
consistent content can be exploited to create larger
shapes based on the surrounding context, while a
patch-based method fills low texture regions with
improved details.

II. RELATED WORK

Free-Form Image Inpainting with Gated Con-
volution presents a novel system using gated con-
volutions and SN-PatchGAN, enhancing inpainting
quality and color consistency over prior methods
[9]. The proposed framework [9] consists of 3
main components. The first stage features a gated
convolution coarse network which generates an in-
painted image with blurry but contextually plausible



Composite Inpainting

Fig. 1: Overview of the framework with gated
convolution and SN-PatchGAN for free-form image
inpainting [9]

regions. Stage 2 is a gated convolution refine-
ment network with contextual attention responsible
for generating finer details based on the coarse
output. The final component is a fully convolu-
tional spectral-normalized Markovian discriminator
for identifying real and synthetic results during
training time (figure 1).

Generative Patch Nearest-Neighbor (GPNN) is
an efficient, high quality patch-based single-image
generation method. GPNN adopts SinGAN’s multi-
scale architecture while replacing the generator and
discriminator with patch nearest-neighbor modules
[5]. While the paper showcased results comparable
to or better than GAN-based models, it does not
discuss inpainting in detail so we were unable to
replicate their results.

Latent diffusion models (LDM) introduced by
Rombach et al. enhances efficiency and quality
in high-resolution image synthesis and inpaint-
ing [7]. The runwayml/stable-diffusion-inpainting
model used in our comparison is based on this
model.

The Gabor filter is a linear filter employed in
texture analysis. In essence, it examines whether
there is particular frequency information in the
image within specific directions in a localized area
around the point or region under scrutiny. Gabor
filters are recognized as a prominent method in
texture classification applicable in textural analysis

for inpainting. Bianconi et al [1] examine the im-
pact of various Gabor filter parameters on texture
discrimination. Their research indicates that while
increasing frequencies and orientations has limited
effect, smoothing parameters significantly enhance
classification performance.

III. METHODOLOGY

We examined recent GAN [9] and patch-based
[5] methods to explore suitable options to base a
hyrbid method upon. A frequent challenge during
this process was that available implementations
featured in or built upon these studies were poorly
maintained with insufficient documentation, written
in multiple programming languages unsuited to the
scope of our study, and in many cases not exe-
cutable. In addition, implementation of inpainting-
specific tasks were often incomplete [6] or men-
tioned but unexplained in the original papers [5].
Hence, while we were able to use off-the-shelf sta-
ble diffusion and GAN methods, a classical patch-
based method was implemented based on a combi-
nation of patchmatch algorithm and the pyramidal
architecture introduced in the GPNN paper [5],
henceforth referred to as multi-scale patch-nearest
neighbor (MPNN).

The base methods including stable diffusion,
GAN, and GPNN were implemented in Python to
facilitate modifications, composition, and evalua-
tion.

Single-method results from DeepFill GAN and
MPNN were composited using different blending
approaches based on high pass (figure 2) and Gabor
linear filtering. An additional hybrid method was
explored by substituting the refinement stage of the
DeepFill GAN with a patchmatch implementation
pass, which we named refinement patch nearest-
neighbor (RPNN).

A. Base Methods

1) Stable Diffusion: A popular off-the-shelf dif-
fusion model [7] pretrained for inpainting-specific
tasks was obtained from Hugging Face to generate
inpainted results for comparison with other base and
hybrid methods.
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Fig. 2: Overview of the GAN-MPNN hybrid architecture. The final composition is produced using high
pass filtering to substitute low-detail areas of the GAN result with highly textured MPNN output.

2) DeepFill GAN: We selected DeepFillV2 for
GAN-based inpainting, primarily for its PyTorch
framework which aligned with our Python-centric
workflow. Notably, this model demonstrated excep-
tional performance in handling complex inpainting
tasks involving free-form masks, which is essential
for reconstructing irregular regions within images.
The availability of its pretrained model significantly
accelerated our process and provided a robust basis
for our hybrid methods.

3) MPNN: Our implementation of a multi-scale
patch nearest-neighbor (MPNN) method is inspired
by the architecture showcased in Drop the GAN [5],
which substitutes the UNet neurons with patch near-
est neighbor (PNN) modules. We further modified
the architecture (figure 2) by iteratively halving both
the source (xt where t denotes the number of times
the image has been downsampled) and mask (mt)
images until the masked dimensions are below the
constant patch size. Random noise is used within

the masked area to initialize the nearest-neighbor
field (NNF), an offset matrix mapping destination
patches to every pixel on the source image. Using
the initial NNF (fT where T denotes the lowest
scale in the pyramid), a patchmatch algorithm is
used to propagate best matches from neighboring
pixels followed by random search steps to escape
local minimums.

ft = PNN(upsample(ft+1), xt,mt)

We propose that downsampling while keeping a
constant patch size allows the PNN to focus on
progressively larger areas in the image, thereby
generating low resolution inpainting using structural
context. The upsampling steps focus on smaller
portions in the source image to refine textural
details. Rather than using single-pixel best-matches,
our reconstruction method averages overlapping
patches weighed using a Gaussian kernel to enhance
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consistency and smoothness between neighboring
reconstructed pixels.

B. Hybrid Methods

1) RPNN: We propose addressing the shortcom-
ings of patch-based methods in structural consis-
tency by using the coarse output from the first
stage of the DeepFill GAN as the reference image
for a refinement patch nearest-neighbor pass. In
contrast to MPNN, the RPNN receives the structural
context from the coarse GAN output rather than
downsampling, so multi-scaling is not required. To
introduce additional texture based on the blurry
GAN output, we perturb the RPNN input with
Gaussian blur and noise (σ = 0.1) to encourage
more stochastic patch matching.

2) High Pass blending: An alternative compo-
sition method generates inpaintings using DeepFill
GAN and MPNN in parallel. High pass filtering
(hpf ) is applied on each output (oGAN, oMPNN)
followed by blurring (B) to isolate areas featuring
higher frequency which may correspond to higher
levels of texturization. The blurred responses from
respective methods are subtracted such that the out-
put is a mask representing areas where the MPNN
output contained more textural details than the GAN
output. The mask is further blurred and normalized
(N ) to improve smoothness of the output. The base
method outputs are finally blended using the mask
using weighed average (figure 2).

mask = N(B(B(hpf(oMPNN))−B(hpf(oGAN))))

ohybrid = (1− mask)⊙ oGAN + mask ⊙ oMPNN

3) Gabor linear blending: In this alternate
method, Gabor filters were applied to blend the
DeepFill GAN and MPNN outputs by extracting
highly textured regions from each of output image.
The process involved:

• Gabor Filter Application: Gabor filters were
applied at orientations (θ) 0, π4 ,

π
2 ,

3π
4 , using

a fixed kernel size (11,23), scale of 8, spatial

aspect ratio of 0.8, and standard deviation (σ)
of 10. The Gabor filter function is given by:

G(x, y;λ, θ, ψ, σ, γ)

= exp

Å
−x

′2 + γ2y′2

2σ2

ã
cos

Å
2π
x′

λ
+ ψ

ã
λ represents the wavelength of the sinusoidal
factor, ψ the phase offset, and γ the spatial
aspect ratio. The chosen parameters resulted
in reasonable processing times and generated
4 Gabor response matrices for each image.

• Aggregate Response Calculation: The aggre-
gate Gabor response for each pixel was the
maximum normalized response from the filter
outputs, computed as:

agg response = max
i

Å |responses[i]|
max (|responses[i]|)

ã
Where i represents the index in the set of pre-
viously generated responses. This step focused
on identifying the most pronounced textured
areas.

• Image Blending: The final image was a linear
blend of GAN and MPNN outputs, weighted
by their respective Gabor responses:

oblended = oGAN ∗RGAN + oMPNN ∗RMPNN

oGAN and oMPNN are the images from the
respective methods, and RGAN and RMPNN
their Gabor responses. This method aimed to
leverage textural details from both techniques,
resulting in a composite image with enhanced
textures.

C. Data Source and Analysis
A variety of images featuring landscape, architec-

ture, and people were procured from Google image
search. Our selection favored images with a broad
spectrum of colours and textural densities. Black
and white masks were created manually in Adobe
Photoshop for each input image. Additionally, the
Places2 data set was included during testing.

Quantitative analysis were performed using mean
square error (MSE), structural similarity index
(SSIM), and peak signal-to-noise ratio (PSNR) of
the inpainted results compared with the unmasked
source images.
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Fig. 3: Original cat image

IV. EXPERIMENTAL RESULTS

Our methodologies were applied to a diverse set
of images, including nature, urban, and nocturnal
scenes with varying textures and colors. The sample
image in figure 3 with the corresponding mask in
figure 4 exemplifies the varied results due to the
fence texture.

Figure 5 presents the inpainting results. The
base methods (first row) demonstrate varying ef-
fectiveness: the diffusion method often hallucinated
irrelevant objects (e.g., a hand or a paintbrush);
DeepFill GAN produced visibly distorted and blurry
fence background that lacked textural accuracy;
MPNN showed a more realistic texture matching
the surrounding fence, but with noticeable structural
inconsistency in the form of incomplete fence cov-
erage. These observations appear consistent with the
mentioned drawbacks in previous literature for each
method.

The hybrid methods (second row) showed var-
ied improvements. High pass blending improved
fence texture integrity by sampling from MPNN
result in areas where GAN results were poor with-
out introducing the structural gap present in the
MPNN result. Gabor blending similarly yielded

Fig. 4: Image with the cat masked out

a smoother image with enhanced textures though
certain artifacts and inconsistencies remained no-
ticeable. RPNN produced the least satisfactory re-
sults, with increased blurriness, larger gaps, and
inconsistent edges.

Quantitative results (figure 6) for the different
base and hybrid methods, evaluated using PSNR,
SSIM, and MSE, showed minor differences indis-
tinguishable from statistical noise. Specifically in
the case of SSIM, all 6 tested methods yielded
scores of approximately 0.96. PSNR values were
also similar, ranging between 25.2 to 25.9 dB.
High pass blending showed an improved MSE
compared to the base methods, but fared slightly
worse than other hybrid methods despite achieving
better qualitative results. Gabor blending had the
lowest MSE and highest PSNR, suggesting the most
accurate reconstruction. RPNN’s performance was
similar to high pass blending. Overall, the various
scores showed little variation across the methods,
providing limited insights.

The generation of novel content to fill the masked
regions presents an inherent challenge to these met-
rics, which compare the generated and original im-
ages which can feature highly different pixel values
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Fig. 5: Comparison of base and hybrid method output

Fig. 6: Mean quantitative measurements for each method

independent of qualitative consistency assessment.

V. CONCLUSION

Our study aimed to explore the efficacy of hybrid
inpainting methods using GAN and PNN tech-
niques. While quantitative analysis using metrics
such as PSNR, MSE, and SSIM provided a foun-
dational understanding of each method’s ability
to recover the masked regions in source images,
it is crucial to acknowledge that such measure-
ments do not adequately correspond to qualitative

factors such as textural and structural consistency
and plausibility, which we assessed through visual
inspection.

Contrary to some assertions in literature such
as “Drop the GAN” [5], our findings do not ro-
bustly support the notion that patch-based meth-
ods can generate results comparable with mod-
ern deep learning-based models. This discrepancy
partly stem from the unavailability of a working
version of their GPNN source code which lim-
ited our ability to directly compare methodologies.
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Fig. 7: Inpainting results from various method using a masked photo of Toronto’s skyline

Nevertheless, our hybrid methods, such as high
pass blending, demonstrated slight improvements in
specific scenarios where the the quality of regular
repeating textures surpassed the results produced
by GAN and diffusion models. These enhancement
came at the cost of increased processing time,
a challenge that could potentially be mitigated
through the implementation of GPU processing.

While our study particularly focused on enhanc-
ing texture details, we must acknowledged that an
increase in textural density does not necessarily
correlate with improved image correctness or plau-
sibility.

Our research suggests that segmentation of the
GAN and patch-based output using per-pixel dis-
criminators [8] may produce more a rational and
plausible criteria for blending, compared to the
more naive methods employed in our study. Fur-
thermore, applying discriminators to the final output

could serve as a better quantitative metric for assess-
ing inpainting efficacy than current measurements.
This direction presents a promising avenue for fu-
ture research, potentially addressing the limitations
observed in our study.
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