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Abstract

This paper investigates the potential of normalization layers as a solution to the low-
frequency bias inherent in deep coordinate networks (DCNs). While DCNs have
emerged as a powerful tool for computational imaging and graphics, their tendency
towards low-frequency bias poses a significant challenge. Traditional approaches to
this issue have relied on Fourier Features (FFs) or periodic activation functions like
sine. We propose an alternative approach that leverages normalization layers, which
are prevalent in other areas of deep learning but underexplored in the context of
DCNs. By examining BatchNorm [4], LayerNorm [1], and RMSNorm [14] within
DCNs, we aim to understand whether these normalization techniques can mitigate
the low-frequency bias and improve the network’s ability to learn high-frequency
signals directly from input coordinates. Our results could pave the way for more
effective and efficient DCN architectures in the future.

1 Motivation

In the realm of neural network research and application, a relatively new architecture known as deep
coordinate networks (DCNs) has begun to distinguish itself [6, 9, 5, 3]. These networks, also known
as implicit representations, are characterized by their use of low-dimensional coordinates as inputs,
which stands in contrast to more traditional neural network structures. The appeal of DCNs lies
in their exceptional flexibility, which is particularly advantageous for fields such as computational
imaging and graphics. By using continuous coordinates of arbitrary resolutions as inputs, these
networks can represent complex spatial relationships with remarkable precision, thereby unlocking
new possibilities in the processing and generation of images, 3D scenes, and beyond.

Despite their potential, coordinate networks are not without their challenges. One of the most
significant issues is the intrinsic low-frequency bias [7] that neural networks tend to exhibit. This
bias makes it inherently difficult for DCNs to learn high-frequency signals which are often crucial for
capturing detailed and nuanced aspects of images and graphics. The prevailing methods to circumvent
this issue involve either the incorporation of Fourier Features [10] or the use of periodic activation
functions such as sine and cosine [9]. These techniques allow for the encoding of high-frequency
information in a manner that the networks can process, but they are not without their trade-offs and
limitations [3, 5], which has driven the search for more effective solutions.

This project is primarily focused on exploring an alternative pathway to overcome the low-frequency
bias in deep coordinate networks. Specifically, it examines whether normalization layers, which have
become a cornerstone in the broader landscape of deep learning, could be repurposed to address this
challenge in DCNs. Normalization layers, such as BatchNorm [4], LayerNorm [1], and RMSNorm
[14], have revolutionized many aspects of neural network training, making them more stable and
efficient. However, their potential impact on the performance of DCNs, particularly in learning
high-frequency signals, remains largely uncharted territory. By investigating this possibility, the
project seeks to offer a novel solution to one of the fundamental obstacles in the application of deep
coordinate networks, potentially broadening their applicability and efficacy.
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2 Related Work

Deep Coordinate Networks (DCNs) have carved a niche in the landscape of neural architectures by
offering a unique mapping mechanism from simple input coordinates to complex outputs, such as
pixel values. This direct mapping capability is largely due to the use of Fourier Features (FFs) [10, 6],
which are integral to enabling the network to interpret fine-grained spatial (or temporal) encodings.
Borrowing concepts from the Transformer’s positional encodings [12], FFs facilitate the DCN’s
understanding of coordinates by projecting them into periodic functions of varying frequencies.
Furthermore, studies have demonstrated that FFs are especially crucial for multi-layer perceptrons
(MLPs) that operate with ReLU activations [6], as they allow these networks to better approximate
the high-frequency components of those functions. The employment of sine activation functions [9],
as an alternative to FFs, has also been shown to yield promising results, allowing for the encoding
and processing of high-frequency information within the network structure. In addition, the domain
of DCNs has been advanced by the introduction of Multiplicative Filter Networks (MFNs) [3], which
provide more controllability of the representation [5, 8]. This innovation has allowed for a linear
function approximation over an exponential number of basis functions, demonstrating that MFNs can
match or even outperform existing approaches that utilize Fourier features with ReLU networks or
sinusoidal activation networks in certain domains. Despite the advancements brought forth by MFNs,
the study of MLP-based DCNs remains critical, as they offer a versatile framework that can be easily
integrated with existing deep learning architectures.

Deep Normalization Layers have long been a staple in the toolkit of deep learning, aimed at
enhancing training stability and convergence rates. Within DCNs, however, the exploration of normal-
ization layers has been limited. Techniques such as Batch Normalization [4], Layer Normalization
[1], and Root-Mean-Square Normalization [14] have revolutionized training efficiency and model
performance across various neural network models. Although certain types of normalization, such as
Group Normalization [13] and Instance Normalization [11], might not be applicable for coordinate
networks, many other types of normalization layers can be directly applied within the realm of
DCNs. The potential of these normalization layers to mitigate the challenges of low-frequency bias
in DCNs represents an intriguing avenue for research. By integrating these normalization strategies,
there is potential not only to enhance the DCN’s ability to learn high-frequency features but also
to possibly speed up the overall learning process, making these networks more adept at handling
complex, high-dimensional signals.

Effect of Batch Normalization on learning dynamics within deep neural networks is a complex
phenomenon that has sparked extensive discussion among researchers. BatchNorm is known to
accelerate neural network training and enhance generalization performance [4]. Some theory suggests
that BatchNorm enhances the smaller eigenvalues to boost training speed at lower learning rates,
and suppreses larger eigenvalues to maintain stability at higher learning rates [2]. In our work, we
also find that Batch Normalization is very effective for DCNs. This underscores the potential of
BatchNorm in not just conventional neural network architectures but also in the specialized domain
of DCNs, which are increasingly important in various domains.

3 Method

3.1 Coordinate Networks

Coordinate Networks are a class of neural networks that map low-dimensional coordinates to a
high-dimensional space, typically used for tasks such as image synthesis or 3D shape representation.
A common approach is to use a multi-layer perceptron (MLP) with L layers and ReLU activations.
Given a coordinate (x, y), the MLP processes this input through a series of transformations to predict
properties like color or density at that coordinate.

The mathematical formulation of this process can be described as follows:

h0 = (x, y) (1)

hl+1 = ReLU(Wlhl + bl), l = 0, . . . , L− 1 (2)

c = WLhL + bL (3)
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Here, hl denotes the hidden representation after the l-th layer, Wl and bl represent the weight matrix
and bias vector for the l-th layer, respectively. The function ReLU is the rectified linear unit activation
function, which introduces non-linearity into the model, enabling it to learn complex functions.

3.2 Adding Normalization Layers to Coordinate Networks

We now investigate an MLP with normalization layers (MLP+Norm) for coordinate networks. The
architecture uses a normalization layer right after each linear layer, and before each ReLU activation
function, as shown in Figure 1. The output is a low-dimensional target such as the pixel value at the
input coordinate location.
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Figure 1: The architecture of our proposed MLP+Norm Coordinate Network.

The normalization techniques used are as follows:

• Layer Normalization (LN) [1]:

LN(xi) = γ
xi − µ√
σ2 + ϵ

+ β (4)

where µ = 1
H

∑H
j=1 xij is the mean and σ2 = 1

H

∑H
j=1(xij−µ)2 is the variance computed

across the features for a feature vector of size H .
• RMS Normalization (RMSNorm) [14]:

RMSNorm(xi) = γ
xi√

1
D

∑D
k=1 x

2
ik + ϵ

(5)

where D is the dimensionality of the input feature vector and the denominator is the root
mean square of the feature vector components.

• Batch Normalization (BN) [4]:

BN(xi) = γ
xi − µB√
σ2
B + ϵ

+ β (6)

where µB = 1
m

∑m
i=1 xi is the batch mean and σ2

B = 1
m

∑m
i=1(xi − µB)

2 is the batch
variance, computed across the m samples in the batch.

Note: In the above equations, γ and β are parameters learned during training, and ϵ is a small constant
added for numerical stability.
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3.3 Other Baselines

SIREN [9], or Sinusoidal Representation Networks, is a type of MLP coordinate network that utilizes
sine functions as activation functions. Unlike traditional MLPs that often use ReLU activations,
SIREN replaces these with the sine function to better capture the periodicities inherent in the data.
The definition in a layer-wise manner is given by:

hl+1 = sin(Wlhl + bl), l = 0, . . . , L− 1 (7)
where hl is the output of the l-th layer, and Wl and bl are the weights and biases, respectively.

Fourier Features [10], also known as positional encodings, are a technique used to encode the
position information into a format that is more amenable to processing by MLPs. They involve
transforming the input coordinates through a set of sine and cosine functions of different frequencies,
effectively lifting the input into a higher-dimensional space where correlations can be more easily
learned. Mathematically, this can be expressed as:

h0(x) = [sin(2πBx), cos(2πBx)] (8)
where x is the input coordinate vector, B is a matrix with frequencies used for encoding, and h0 is
the positional encoding feature vector (initial input to the network).

4 Experimental Results

In our comprehensive experimental framework, each model underwent a training regimen of 2000
gradient steps, employing the Adam Optimizer with a learning rate set to 1× 10−4. The architecture
of each multi-layer perceptron (MLP) consisted of 3 layers, with each layer featuring a hidden
dimensionality of 256. This consistent configuration across experiments ensured that the observed
performance differences could be attributed to the normalization techniques rather than variations
in network capacity. The robustness of different normalization techniques was rigorously evaluated
within this controlled setting, providing clear insights into their respective impacts on the learning
dynamics of deep coordinate networks.

Figure 2: 2D Imaging Fitting Experiment.

The performance was measured using Peak Signal-to-Noise Ratio (PSNR). Peak Signal-to-Noise
Ratio (PSNR) is a common measure used to assess the quality of reconstruction of lossy compression
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codecs. The metric is most commonly used in image processing to compare the output of an algorithm
against a ground truth image. PSNR is defined as:

PSNR = 10 · log10
(

MAX2
I

MSE

)
(9)

where MAXI is the maximum possible pixel value of the image, and MSE is the mean squared error
between the original and reconstructed image. The MSE is calculated as:

MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 (10)

Here, m and n are the dimensions of the images, I is the original image, and K is the reconstructed
image. Higher PSNR values typically indicate better quality reconstruction.

Each model was tasked with fitting a 2D image, which is a common benchmark for assessing
the ability of a network to capture and reproduce complex patterns, particularly high-frequency
details. We systematically applied Batch Normalization (BN), Layer Normalization (LN), and RMS
Normalization (RMSNorm) across different network architectures, including a basic multi-layer
perceptron (MLP), SIREN with sine activations, and networks utilizing Fourier Features for positional
encoding. Special attention was given to the comparison of the same normalization technique’s
performance across the different setups, as our primary hypothesis centered on its potential to enhance
learning of high-frequency signals.

The results were strikingly clear, with BN combined with the MLP framework yielding the highest
PSNR values, significantly outperforming other normalization techniques. This finding underscores
the importance of BN in enabling deep coordinate networks to effectively learn and replicate high-
frequency details in images. The efficacy of BN in facilitating the neural network’s ability to discern
and model intricate patterns was evident when compared to the SIREN model, which, despite its sine
activation functions that are theoretically beneficial for such tasks, did not achieve comparable PSNR
values without BN. Similarly, models leveraging Fourier Features for positional encoding displayed
improved performance with BN, suggesting that BN’s role in stabilizing and speeding up the learning
process is crucial across different network designs. Our experiments not only affirm the critical role
of BN in enhancing MLPs but also pave the way for future research into the optimization of deep
learning models for complex signal processing tasks.

Method PSNR
Ground Truth -
SIREN 35.79
SIREN + LN 4.89
SIREN + BN 4.90
MLP 15.80
MLP + LN 16.56
MLP + BN 52.80
MLP + RMSNorm 16.38
Fourier Features 23.95
Fourier Features + LN 25.30
Fourier Features + BN 41.21
Fourier Features + RMSNorm 25.99

Table 1: PSNR comparison of different normalization techniques applied to deep coordinate networks.

The results clearly indicate that incorporating BN with an MLP results in the highest PSNR, suggesting
that this configuration is the most effective at capturing high-frequency details compared to other
normalization techniques.
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Figure 3: Another example of the 2D Imaging Fitting Experiment.

5 Discussion

Our main finding is that Batch Normalization (BN) significantly enhances the network’s ability to
learn high-frequency signals. Two potential reasons why Batch Normalization (BN) is effective for
deep coordinate networks in learning high-frequency signals are:

1. Internal Covariate Shift Reduction: BN standardizes the inputs to each layer across the
batch, which can reduce the internal covariate shift—where the distribution of network
activations changes during training. This stabilization allows higher learning rates and
more aggressive training, enabling the network to adapt more quickly and effectively to the
high-frequency components of the data.

2. Smoothing the Optimization Landscape: By normalizing the inputs to layers, BN may
help smooth the optimization landscape, making it easier for the gradient descent algorithm
to find lower loss regions. This smoothing effect can be particularly beneficial in deep
coordinate networks, which might have complex loss surfaces due to the high-frequency
nature of the signals they attempt to model.

6 Conclusion

In conclusion, our exploration into the integration of Batch Normalization (BN) within deep coor-
dinate networks has yielded compelling evidence of its effectiveness in enhancing the learning of
high-frequency signals. This improvement is crucial for tasks that demand a high level of detail
and precision. The findings from our experiments suggest that BN not only accelerates the training
process but also facilitates a more robust convergence, potentially transforming the approach to
designing and training deep coordinate networks for complex, high-dimensional signals.

We plan to further extend this work in two ways:

1. Extending the experiments to NeRF models. Due to the limitation of time, we have not
yet been able to apply this technique to NeRF models. However, if the conclusion drawn
from 2D image fitting experiments holds true in general, then we expect this technique to
speed up NeRF training.

2. Theoretical explanation of why this technique works so well. We have not yet been able
to fully mathematically explain why this technique works so well for coordinate works.
Perhaps tools from Fourier analysis and further visualizations of the learned scales and
biases inside each BN layer can offer more insights.
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