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Abstract—Under Display Cameras (UDC) are the next-generation technology developed for mobile devices where the camera is
embedded under the display so that the screen covers the entire surface. However, placing the camera inside the screen introduces
degradation such as noise, flare, haze and low light. In this work, we solve this ill-posed inverse problem and restore the UDC image
through approaches of cross-model knowledge distillation and denoising diffusion probabilistic models. Distillation allows us to develop
an efficient solution which is deployable, meanwhile, the use of diffusion models previously unexplored on UDC gives some interesting

results, beating the state-of-the-art PSNR value.

Index Terms—Under Display Cameras, Denoising, Cross-Model Knowledge Distillation, Diffusion

1 INTRODUCTION

ECENT advances in product technology have led to a
Rnew imaging system that places the camera in a device
(phone, tablet, etc.) beneath the screen to provide the user
with a bezel-less, full-screen experience. UDC replaces the
current top-notch or punch-hole based cameras that break
the screen’s smoothness, improving the display-to-body
ratio and enhancing eye contact, especially in video ap-
plications. However, placing the camera behind the screen
brings inevitable degradations that cannot be neglected.
Noise, flare, haze and low light are common degradation
found in UDC images. There are two types of device screens
- Transparent OLED (T-OLED) and phone Pentile OLED
(P-OLED) which produce different UDC images. T-OLED
produces a simpler degradation that has slight noise and
blur without introducing any light or haze effects. This is
because T-OLED is transparent, allowing most photons to
pass through. On the other hand, P-OLED produces intense
degradation like noise, haze, low light, etc. due to a lower
light transmission rate. Consequently, it is much harder
to restore a P-OLED output. An example of UDC image
degradation can be seen in Fig 1.

Fig. 1. Sample of a noisy image obtained through T-OLED and P-OLED
screens.

Deep Learning has been extensively used for solving
such inverse problems due to the end-to-end learning ca-
pability of such models. They do not need any explicit
information about the data distribution as long as there is
some form of supervision. From convolution-based [1], [2]
to transformer models [3], [4], there has been a plethora of
research to solve such inverse problems. Specifically, UDC
image restoration requires the joint modelling of methods
resolving different optical effects caused by the displays and
camera lens. Despite being a developing problem, various

methods have been proposed to recover UDC Images owing
to the work of [5].

However, two areas have still not received much
attention for UDC restoration. Firstly, little thought has been
given to developing efficient models that can be deployed
successfully. Since we eventually need the solution to work
on mobile devices, it makes sense to make a lightweight
model. Secondly, the class of diffusion models [6] that
are based on learning the noisy distribution of data and
removing it at subsequent steps has not been explored at
all. Thus, in our work, we experiment with two approaches
- a) We perform cross-model knowledge distillation to get a
lightweight, efficient solution that offers high performance
at lesser computational cost, and b) We experiment with
a pre-trained diffusion U-Net model to study the efficacy
of denoising diffusion probabilistic methods. An 8-layer
Denoising CNN (DnCNN) [2] estimates noise variance for
inputs, serving as priors to the model. To our knowledge,
we are the first to experiment with knowledge distillation
and diffusion-based models for restoring UDC images.

Thus, our contributions can be summarized as -

o Considering efficiency and deployment, we imple-
ment a cross-model knowledge distillation between
a simple convolution-based U-Net student and a
bulky, pre-trained Transformer teacher.

e We evaluate the capability of denoising diffusion
probabilistic models (DDPM) on UDC image restora-
tion by fine-tuning a pre-trained diffusion U-Net
model in conjunction with an auxiliary DnCNN for
noise variance estimation.

2 RELATED WORK

Zhou et al. [5] first introduced the problem of UDC image
restoration by providing an analysis of the optical systems
underlying 4k Transparent OLED (T-OLED) and phone
Pentile OLED (P-OLED) imaging setups. The authors first
compared the two degradation types through their display
pattern, corresponding point spread function (PSF) and light



transmission rate. Their findings demonstrated the stripe-
like pattern of T-OLED displays leading to a horizontal
spread of light in the PSF while P-OLED displays exhibited
a pentile layout similar to the structure of an RGBG matrix,
resulting in an even distribution of light. Moreover, they
noted that a lower transmission rate in P-OLED displays
was attributed to higher scattering of photons due to finer
pixel layout and higher photon absorption in the poly-
amid substrate used for the screen. The authors also pre-
sented a Monitor-Camera Imaging System (MCIS) which
was composed of a point-grey camera focused on a 4K LCD
display that was projecting a given image. In front of the
camera lens was either a T-OLED, P-OLED, or glass (no
display) panel. This enabled the authors to capture paired
data of high-quality and degraded images while measuring
intensity scaling factor, read noise, shot noise, and other
imaging parameters. The parameters were subsequently
used for generating synthetic degraded data. Finally, they
presented baseline performance metrics with a Wiener Filter
restoration pipeline and deep learning-based pipelines with
a U-Net model achieving the highest PSNR of 36.71 and
30.45 for T-OLED and P-OLED respectively.

In 2020, Zhou et al [7] held a competition at the European
Conference on Computer Vision (ECCV) for UDC image
restoration. The competition employed the same MCIS sys-
tem from [5] to share a dataset of 300 paired images from
the DIV2K dataset with the participants. The Baidu Research
Vision team performed the best for T-OLED restoration by
utilizing a dense residual network for image denoising and
demosaicking. The team added a shade-correction module
which learns coefficients for patterns specific to the T-OLED
screen to correct shade in addition to normal restoration.
By training the model on a patch size of 128x128, the
team scored a 38.23 PSNR and an SSIM of 0.9803 for T-
OLED. Moreover, the CET_CVLab achieved the best perfor-
mance for P-OLED restoration through a Pyramidal Dilated
Convolutional RestoreNet (PDCRN). Their model followed
an encoder-decoder architecture, with the downsampling
in the encoder occurring via a discrete wavelet transform
(DWT) and an inverse discrete wavelet transform (IDWT)
upsampling the data in the decoder. Dilated convolutional
pyramids that stack dilated convolution layers with de-
creasing dilation rates are also interspersed throughout
the model, to help minimize information loss. The team
achieved a PSNR of 32.99 and an SSIM of 0.9578 for P-OLED.

Another competition was held in ECCV 2022 featuring
a UDC restoration track [8]. The dataset used was inspired
by work done in [9] that stemmed from the original MCIS
work but instead reformulated the problem to also account
for diffraction flare in saturated regions of the high-dynamic
range (HDR) image. The top result was achieved by the
USTC_WXYZ team which employed a multi-input multi-
output deep convolutional neural network with various
dense residual blocks, attention modules, and cross-fating
fusion modules for multi-scale feature fusion. The model
resulted in the highest competition PSNR of 48.48 with an
SSIM of 0.9934.

In terms of methods with efficient deployment, Conde et
al [10] achieved competitive results for UDC image restora-
tion using only deep learning methods while having 4x
less compute operations. The authors first develop DRM-

2

UDCNet, a CNN with an encoder and decoder architec-
ture, where each segment contains several Dense Residual
Modules (DRM). Additionally, a parallel attention branch
performs channel and spatial attention on the input image
separately before combining the extracted features with the
base branch. The authors then optimize the architecture
into a more efficient model, termed the LUDCNet, which
contains fewer DRM blocks, no batch normalization, and
processes images at half-resolution while upsampling them
at the end. The authors mainly train and evaluate on
the SYNTH dataset used in [8]. The larger DRM-UDCNet
achieves a 40.21 PSNR and 0.98 SSIM on the dataset with
2.9 million parameters, while the LUDCNet achieves a 0.93
SSIM with around 300K parameters.

3 PROPOSED METHOD
3.1 U-Net with Knowledge Distillation

In this approach, we attempt to develop a lightweight model
that performs well given the limited training data using
the technique of Knowledge Distillation (KD). KD is an
approach to transfer the representation capacity of a larger
model (teacher) to a smaller model (student) that can be
practically deployed under real-world constraints, without
significant loss in performance. [11] showed the efficacy of
such a technique. In our case, we specifically perform cross-
model knowledge distillation, where we distil feature-level
knowledge from a transformer model to our simpler U-Net
model. We first train a transformer model - Restormer [4] on
our training pair of data, achieving very good results. How-
ever, it is not practical to deploy this model and inference
in real-time on mobile devices, so we take another simpler
architecture U-Net [12] and train it on the available data. The
choice for U-Net was made based on its encoding-decoding
property and useful skip connections.

Since the training data is limited (only 240 images) and
the learning capacity of the U-Net base is not as strong, we
direct it to learn and output better representations by using
the high-performing Restormer model. During training, we
freeze the teacher model so it is only working in evaluate
mode while the U-Net is allowed to backpropagate and
update its weights.

The challenge with feature-level distillation between dif-
ferent architectures (cross-model) is that each feature map at
a particular layer of the two models does not need to have
the same shape or learn the same features. To overcome
this, there needs to be a reduction mapping before we
can transfer the knowledge from teacher to student. We
experimented with two such reduction operators and found
the following:

1) 1x1 convolution - First we tried to combine the
feature maps by maintaining their spatial output
and compressing the information along the channel
through the use of 1x1 convolution. In particular,
we perform the following combination -

Student Layer (B, C',H,W) « TeacherLayer(B,C", H,W)

The 1x1 convolution converts the C” channels
to 1 ie. single channel and the result is then
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Fig. 2. The teacher model is Restormer [4] which is pre-trained and frozen, the lighter student model is a U-Net that does 4x downsampling and

upsampling.

simply added (or multiplied). However, it was
found that since convolution is parametric, it was
absorbing all the information that should have been
transferred to the student model layers. As a result
during inference, when the 1x1 convolutions were
removed, the student model lost all its ability to
generate results.

2) Global Average Pooling - In this, we simply squeeze
the information along the spatial output. We then
take the mean along the channel axis as well,
returning us a single scalar value compressing all
the information of the feature map, which is then
added/multiplied with the U-Net layer.

GAP@B,C",H,W) — (B,C",1,1).mean(1) — (B,1,1,1)

Being non-parametric, this type of pooling forced
the student model’s layers to adjust the weights
and learn accordingly, working well even during
inference when there is no extra knowledge.

The architecture of our models and training with knowl-
edge distillation can be visualised in Fig. 2.

3.2 Diffusion U-Net

A popular approach to image generation and restoration
tasks has been denoising diffusion probabilistic models
(DDPM) [6]. The diffusion approach is split up into two
stages: a forward diffusion process which gradually adds
Gaussian noise to an input image, and a reverse diffusion
process which samples a noisy image from a Gaussian
distribution and then incrementally removes noise until a
new image is uncovered [6]. Starting with an input image,
xo, over T' timesteps, the forward process gradually adds
Gaussian noise with the Gaussian noise added at timestep
t < T having a mean, p; = /1 — B¢x;—1, and variance,
B¢ for T timesteps. The variances used across timesteps are
scheduled such that the final image after T' timesteps is
nearly pure Gaussian noise. In the reverse diffusion process,

a neural network is employed to learn the mean (i) and
variance (3 ¢) parameters of the conditional probability
distribution to recover the incrementally denoised example
at each timestep:

Po(xi-1|xt) = N (x¢—1; po (%0, 1), > 0(x1, 1))

Through re-parameterization tricks, the objective function
for this reverse process can be made into a simpler L2
loss minimization between the Gaussian noise distribution
sampled during the forward process at time ¢, €, and the
model’s approximation of the noise, €p(x:, t), parameterized
by the input noisy image, x and timestep, t [6].

For this work, we adopt and fine-tune the standard
diffusion-based U-Net model introduced in [13]. The model
is initially pre-trained on the Flickr-Faces-HQ (FFHQ)
dataset which consists of roughly 70K PNG images. The
model itself is a modified version of a standard U-Net
architecture, with 6x downsampling and 6x upsampling
layers. Each layer is composed of a single residual CNN
block with sinusoidal time-step embeddings added to it.
At the 16x16 resolution, there is a self-attention layer used
following the layer’s residual block. There is also a larger
variant with more down-/up-sampling and attention layers
which was pre-trained on the larger ImageNet128 dataset
[14].

At each forward pass, the model requires both the input
noisy image and the timestep corresponding to the point
in time in the forward diffusion process when the input
image’s Gaussian noise was sampled. Since we aim to only
fine-tune the model, we forgo the forward diffusion process
and train the reverse diffusion process on our dataset. As a
result, the timestep is unknown during each forward pass
through the model. To address this, we create a simple
8-layer DnCNN which takes the noisy input image and
outputs a scalar estimate of the noise variance in the input.
This scalar estimate can be used through the pre-computed
variances that the diffusion U-Net model was trained with
to find the timestep of the closest known variance and thus,
input that timestep along with the noisy input image to the
diffusion U-Net. The model architecture is shown in Fig 3
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Fig. 3. Diffusion U-Net model with auxiliary DnCNN for noise variance estimation priors.

The DnCNN architecture typically outputs a feature map
of the estimated noise, z € RP*C=HzW Tq convert this into
a scalar noise variance estimate, v € RB*! instead, two
approaches were tried:

1) Double Average Pooling - The simplest approach
was to perform a 2D Global Average Pooling
operation over the spatial dimensions of each
output channel, followed by another Average
Pooling operation over the remaining channel
dimension:

v = AP(GAP(z))

During experimentation, it was found that this
approach did not work as well in approximating
the noise variance in the input image. The DnCNN
was unable to produce feature maps in a way that
would result in averaging the features across all
three dimensions producing a strong estimate of
the variance in the noise predicted.

2) Dense Layer - The second approach involved
performing only one 2D Global Average Pooling
operation over the spatial dimensions of the output
feature map, and then passing the result to a dense
layer with only 1 output neuron:

v =GAP(z)w + b,w € RZ*!

This worked better in practice for estimating noise
variance. It could perhaps be explained by the pres-
ence of the extra set of weights in the final dense
layer potentially permitting more capacity for the
DnCNN to model the residual error present in its
initial feature map estimation of the noise.

4 EXPERIMENTAL RESULTS
4.1 Dataset

We use the dataset provided by [5] which was also used in
the ECCV 2020 competition [7]. The dataset comprises 240
pairs of clean/noisy images, for both the T-OLED and P-
OLED types. We use only this set of images, without any
additional training.

4.2 Training Parameters

The knowledge distillation models were trained for 200
epochs while the diffusion U-Net models were trained for
100 epochs. All experiments were done with a learning rate
of 1le™3 using the Adam optimizer. Due to computational
constraints, we trained with a resized input of (256, 512,
3) with a batch size of 4. Many loss functions are used
in reconstruction tasks such as L1, L2, SSIM, Grad Loss,
Perceptual Loss, etc. In this work, we use L2 and Percep-
tual loss (through VGG16) for knowledge distillation and
ground truth comparison. For the diffusion models, we only
use the L2 loss. Training took place on a single accelerator -
either an NVIDIA RTX A4000 or an NVIDIA RTX 4090.

4.3 Quantitative Results

As seen in Tables 1 and 2, through knowledge distillation,
we can train a model for UDC restoration with as low
as 7.78M parameters, achieving competitive results in both
categories of datasets. In P-OLED, the U-Net base (i.e. with-
out distillation) performs well enough to get 27.72 PSNR
compared to ground truth. With distillation, we achieved a
PSNR of 30.59 with 0.91 SSIM. On T-OLED restoration, it
is found that the U-Net base works a little better without
distillation, getting 37.75 PSNR with 0.98 SSIM meanwhile
with distillation it gets 36.24 PSNR with 0.97 SSIM.

The standard diffusion U-Net model outperformed all
other methods on the T-OLED data, achieving a PSNR of



TABLE 1
Performance metrics comparison between different approaches on T-OLED data.

Approach PSNR (dB) SSIM  No. of Parameters Inference Time (s/img) CPU/GPU
Best from [7] 38.23 0.98 - 11.8 Tesla M40
U-Net Base 37.75 0.98 7.78M 0.03524 RTX A4000
U-Net Base + KD 36.24 0.97 7.78M 0.03588 RTX A4000
Diffusion U-Net (Standard) 42.37 0.99 94M 0.27768 RTX 4090
Diffusion U-Net (Large) 30.33 0.9 553M 0.86504 RTX 4090
TABLE 2
Performance metrics comparison between different approaches on P-OLED data.

Approach PSNR (dB) SSIM  No. of Parameters Inference Time (s/img) CPU/GPU
Best from [7] 329 0.96 - 0.044 Tesla T4
U-Net Base 27.72 091 7.78M 0.03532 RTX A4000
U-Net Base + KD 30.59 091 7.78M 0.03616 RTX A4000
Diffusion U-Net (Standard) 27.15 0.83 94M 0.27724 RTX 4090
Diffusion U-Net (Large) 18.09 0.47 553M 0.86636 RTX 4090

42.37 and a 0.99 SSIM. However, for P-OLED data, the stan-
dard diffusion U-Net achieved a lower PSNR at 27.15 and
an SSIM of 0.83 as compared to the knowledge distillation
approaches. Moreover, in both degradation types, the larger
diffusion U-Net performed worse in both PSNR and SSIM
than all other methods.

In terms of throughput, the inference times shown in
Tables 1 and 2 are computed through performing evalua-
tion on original size data (as memory constraints were an
issue during training). It is evident that the U-Net only
models tend to process input images the quickest, without
accounting for differences in hardware. Since the eventual
goal of any image restoration pipeline for smartphones is
to be utilized in a resource-constrained, real-time setting,
the results from Tables 1 and 2 can be further visualized to
gauge which of the approaches is most viable. By plotting
the SSIM scores against the ratio of the PSNR and inference
times of each method, as seen in Fig. 5, the more viable
approaches for real-time usage are found to be U-Net Base
and U-Net Base + KD models amongst the novel approaches
tried.

4.4 Qualitative Results

We plot the model outputs obtained through knowledge
distillation and denoising diffusion in Figure 4. The results
greatly resemble the original ground truth images, matching
the contrast, clarity and sharpness, proving that our models
could reverse the degradations quite well. It effectively
restores the low-frequency components maintaining the
minute details in reconstruction. However, we also notice
that diffusion models tend to over-correct the colours and
typically result in different shades of a given hue.

5 DISCUSSION

Overall our methods lay a good groundwork for
experimenting with new approaches. KD works in the
case of P-OLED, improving the PSNR from 27.72 to 30.59,
however, a similar trend is not seen in T-OLED where

the base U-Net without distillation performs slightly
better. There could be two possible reasons for that - a)
T-OLED is a fairly simpler problem than P-OLED, where
the nature of degradation is a lot like Gaussian blur and
noise, so knowledge distillation might be overfitting for
the problem and thus showing poorer results on test data,
b) We perform cross-model knowledge transfer, where the
teacher and student models are not identical, thus we do
not know for certain that the information combined from
the corresponding layers between the two models might be
learning the same type of features.

The standard diffusion model performed the best out
of all other approaches in restoring the T-OLED degraded
images, with the highest PSNR of 42.37. This was likely
because the diffusion U-Net model was first pre-trained to
effectively remove Gaussian noise from sampled images and
produce high-quality face images. As the task of restoring
degradations on T-OLED images consists of mainly address-
ing some noise and blur, it is very close to the original pre-
training task of Gaussian denoising. As a result, the pre-
trained diffusion U-Net was able to easily transfer its learn-
ing from the initial task to denoising the UDC images in the
T-OLED setting. Comparatively, the diffusion approaches
did not perform as well on the P-OLED data. This could
be explained by the fact that the P-OLED screens introduce
an amalgamation of different degradations, such as haze,
low light, blur, and flare, which results in a much more
complex restoration task. As this task is functionally more
challenging than the initial pre-training task of removing
Gaussian noise, it is expected that the diffusion models will
not perform as well just after fine-tuning.

In terms of qualitative results, the diffusion models ex-
hibited an interesting artefact of over-correcting the colour
intensity in the P-OLED restored images. This might have
been due to the original training data (FFHQ) not contain-
ing similar natural scene images (ex. facial images with
similar background colours) as the natural scene images in
our dataset. Furthermore, since our dataset was only 240
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training examples, this would not have been sufficient to
effectively learn accurate colour representations for larger
models like DDPMs. Similarly, the larger diffusion U-Net
model’s poor performance in both T-OLED and P-OLED
settings can be attributed to the lack of training data volume.
Since the model had around 500M parameters, using a small
training dataset would likely not be enough to effectively
shift the parameters of the model without overfitting the
training data.

Finally, we also tried a few other experiments that did
not give satisfactory results. In particular, we tried to do
some preprocessing on the inputs that could effectively
make it easier for a simple DnCNN-only model to re-
store the images. For this, we tried re-lighting through the
Retinex algorithm [15] (centre-surround, path-based, and
DeepRetinex [16]) and dehazing via dark channel prior [17].
Both of these preprocessing failed to give better results,
decreasing the quality by up to 5dB PSNR.

6 CONCLUSION

In this work, we dealt with restoring under display
camera images through knowledge distillation and dif-
fusion approaches. We developed a lightweight, efficient

model through knowledge distillation between a larger
transformer-based model and a more efficient U-Net base -
demonstrating the effectiveness of distillation by improving
the results. The knowledge distilled U-Net base model pro-
vided the quickest inference times than other methods and
achieved decent PSNR and SSIM metrics on both T-OLED
and P-OLED data. We also experimented with diffusion
models that are so far not yet explored for UDC restoration
and observed that they might work quite well, beating
state-of-the-art results as well on simpler degradations (eg.
images from T-OLED screens) with just fine-tuning.

In future work, we could experiment with making the
models more efficient via quantization and pruning. The
cross-model knowledge distillation connections can also
be further explored through ablation studies to find the
most optimal connections between feature maps of dif-
ferent layers. For the diffusion models, as they are too
computationally and memory-expensive to deploy in real-
time, a knowledge distillation approach could also be ex-
perimented with as well. Larger datasets, like [8], should
also be experimented with, and performance in real-time
settings (eg. on an accelerated smartphone device) may also
be explored. There should also be more endeavour to get
better and larger datasets. Also, treating UDC as a non-blind



image formation could help develop deconvolution-based
solutions (through PSF estimation) that can be embedded
right into the ISP level.
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