
1

Analyzing 3D Gaussian Splatting and Neural
Radiance Fields: A Comparative Study on

Complex Scenes and Sparse Views
Cordell Blanchard, Lakshya Gupta, Shailesh Nanisetty

Abstract—This paper delves into state-of-the-art methods in 3D image reconstruction and rendering, spotlighting Neural Radiance
Fields (NeRF) and 3D Gaussian Splatting as transformative methods. While NeRF introduces a neural network for high-fidelity scene
reconstruction, its computational demands led to the development of variants like InstantNGP, prioritizing faster processing times.
Concurrently, 3D Gaussian Splatting emerges as a fast alternative, employing Gaussian’s for efficient scene reconstruction. This study
conducts a comparative analysis of Gaussian Splatting and InstantNGP, focusing on their performance in rendering complex scenes
with reflective and transparent surfaces, as well as their efficacy in reconstructing high-fidelity images from sparse views. This research
contributes valuable insights into which of the two models performs better under complex circumstances with faster training time than
current state-of-the-art methods.

✦

1 INTRODUCTION

IN recent years, the field of 3D image reconstruction and
rendering has made significant strides, with ground-

breaking techniques like Neural Radiance Fields (NeRF)
and 3D Gaussian Splatting emerging as prominent meth-
ods. These advancements have substantially enhanced our
ability to render complex scenes, especially those involving
challenging material types such as reflective and transparent
surfaces.

NeRF represents a paradigm shift in high-fidelity 3D
scene reconstruction. It employs a deep neural network
to encode a volumetric scene function that maps 5D coor-
dinates (including 3D position and 2D viewing direction)
to color and density, allowing for detailed rendering of
intricate scenes. However, the high computational demands
of NeRF models pose significant challenges in terms of re-
source and time requirements. To address these limitations,
variants like InstantNGP have been developed, offering
faster processing times while still delivering quality outputs.
InstantNGP represents a leap in efficiency, using innovative
data structuring and neural network optimizations to en-
hance speed.

Parallel to these developments, 3D Gaussian Splatting
has been gaining attention as a fast and efficient alternative.
Distinguished by its use of Gaussian kernels to project 3D
points onto a 2D plane, this method has been reported to
be up to 50 times faster than traditional NeRF models. Its
ability to handle sparse inputs and efficiently reconstruct
scenes with limited data points makes it an attractive option
for comparison against fast NeRF models like InstantNGP.

This paper aims to undertake a comparative analysis
of 3D Gaussian Splatting and InstantNGP, focusing on two
critical aspects:

1) Assessing the performance of both models in ren-
dering scenes with reflective and transparent sur-
faces, challenging scenarios for most 3D reconstruc-
tion algorithms.

2) Examining the efficacy of Gaussian Splatting in re-
constructing high-fidelity images from sparse views
and compare its performance against that of Instant-
NGP.

This study is significant as it sheds light on the trade-offs
between processing speed and rendering accuracy in ad-
vanced 3D reconstruction techniques. By concentrating on
specific challenging datasets, it provides valuable insights
that could guide future research and practical applications
in fields that demand rapid, high-quality 3D rendering.

2 RELATED WORK

2.1 Structure from Motion and Multi-view Stereo

The introduction of Structure-from-Motion (SfM) by
Snavely et al. [1] opened up a new realm where a set of pho-
tos could be utilized to generate novel views. SfM initially
establishes a sparse point cloud during camera calibration,
primarily for basic 3D space visualization. Subsequent ad-
vancements in multi-view stereo (MVS), as demonstrated
by Goesele et al. [2], led to remarkable progress in full
3D reconstruction algorithms. This progress, in turn, facili-
tated the development of various view synthesis algorithms
involving re-projecting and blending input images into a
novel view camera, leveraging geometry for guidance.

While these approaches yielded impressive results in
many cases, they often struggled to fully recover from un-
reconstructed regions or instances of ”over-reconstruction”
when MVS generated non-existent geometry. In contrast,
recent advancements in neural rendering algorithms, exem-
plified by Tewari et al. [3], have significantly mitigated such
artifacts. These neural rendering methods also circumvent
the resource-intensive task of storing all input images on the
GPU, surpassing traditional techniques in various aspects.



2

Fig. 1. Illustration of multiresolution hash encoding in 2D [4]

2.2 Neural Rendering and Radiance Fields
Neural Radiance Fields (NeRFs), as introduced by Milden-
hall et al. [5], incorporated importance sampling and po-
sitional encoding to enhance rendering quality but at the
expense of speed due to a large Multi-Layer Perceptron.
The success of NeRF spurred a proliferation of subsequent
methods aiming to balance quality and speed, often through
the introduction of regularization strategies. The current
leading-edge in image quality for synthesizing novel views
is represented by Mip-NeRF360, as proposed by Barron et
al. [6]. While Mip-NeRF360 achieves exceptional rendering
quality, the associated training and rendering times remain
exceedingly high.

Recent advancements in methodologies prioritize ac-
celerated training and/or rendering, primarily leveraging
three design decisions: employing spatial data structures
to store (neural) features that are later interpolated during
volumetric ray-marching, utilizing various encodings, and
adjusting the Multi-Layer Perceptron (MLP) capacity. For in-
stance, InstantNGP, as presented by Müller et al. [4], exploits
a hash grid and an occupancy grid to hasten computation.
Additionally, it employs a smaller MLP to depict density
and appearance. This method relies on Spherical Harmonics
for the direct representation of directional effects.

2.3 Point-Based Techniques
Point-based techniques are adept at efficiently rendering
disconnected and unstructured geometry samples, such as
point clouds, as demonstrated by Gross and Pfister [7]. 3D
Gaussians offer a more versatile representation of scenes,
eliminating the necessity for Multi-View Stereo (MVS) ge-
ometry and enabling real-time rendering through a tile-
based rendering algorithm for the projected Gaussians. This
technique is taken advantage of in the 3D Gaussian Splatting
Model [8]

3 METHODS

3.1 Instant Neural Graphics Primitives (Instant NGP)
The aim of Instant NGP [4] is to enhance approximation
quality and accelerate the training speed of a fully con-
nected neural network denoted as m(y;ϕ). The focus lies

on optimizing an encoding of its inputs y = enc(x;θ) to
achieve superior performance across diverse applications,
all while minimizing any notable impact on computational
efficiency. The neural network comprises trainable weight
parameters ϕ and introduces an additional set of trainable
encoding parameters θ. These are arranged into L levels,
each containing up to T feature vectors with dimensionality
F.

Figure 1 illustrates the steps performed in the multireso-
lution hash encoding. Every level, depicted in the figure by
two instances highlighted in red and blue, operates indepen-
dently. In a conceptual sense, these levels store feature vec-
tors positioned at the vertices of a grid. The resolution of this
grid is selected to follow a geometric progression spanning
from the coarsest to the finest resolutions [Nmin,Nmax]:

Nl = [Nmin.b
l] (1)

b := exp(ln(Nmax)− ln(Nmin)/L− 1) (2)

Nmax is chosen to match the finest detail in the training
data. Due to the large number of levels L, the growth factor
is usually small.

The input coordinate x ϵ Rd is scaled by that level’s grid
resolution before rounding down and up. Each corner is
mapped to an entry in the level’s respective feature vector
array, which has fixed size of atmost T. For coarse levels
where a dense grid requires fewer than T parameters, i.e.
(Nl + 1)d<=T, this mapping is 1:1. A hash function h:
Zd− > ZT is used at finer levels,to index into the array, uti-
lizing it as an without explicit collision handling.Gradient-
based optimization is used instead to embed relevant sparse
details in the array. The neural network m(y;ϕ) is then
employed for resolving collisions. The count of trainable
encoding parameters θ is consequently O(T), constrained by
TLF. A spatial hash function Techsner et al. [9] is used:

h(x) = (
d⊕

i=1

xiπi)modT (3)

where
⊕

denotes the bit-wise XOR operation and πi are
unique, large prime numbers. Lastly, the feature vectors at
each corner are d-linearly interpolated according to the rela-
tive position of x within its hypercube, i.e. the interpolation



3

Fig. 2. Adaptive Gaussian Densification Scheme.Top Row (under-reconstruction) and Bottom Row (Over-reconstruction) [8]

Fig. 3. 3D Gaussian Splatting Pipeline [8]

weight is wl = xl − [xl]. Recall that this process takes place
independently for each of the L levels. The interpolated
feature vectors of each level, as well as auxiliary inputs
ζϵRE (such as the encoded view direction and textures
in neural radiance caching), are concatenated to produce
yϵRLF+E , which is the encoded input enc(x;θ) to the MLP
m(y;ϕ).

3.2 3D Gaussian Splatting
The input to 3D Gaussian Splatting is a set of images of
a static scene, together with the corresponding cameras
calibrated by SfM Schönberger and Frahm [10] which pro-
duces a sparse point cloud as a side-effect. 3D gaussians
are differentiable and can be easily projected to 2d SPLATS
allowing fast α-blending for rendering. From these points, a
set of 3D Gaussians is created, defined by a position (mean),
covariance matrix and opacity α, that allows a very flexible
optimization regime. The Gaussians are defined by a full
3D covariance matrix Σ defined in world space Zwicker et
al. [11] centred at point (mean) µ:

G(x) = e−1/2(x)TΣ−1(x) (4)

This Gaussian is multiplied by α in the blending process.
Given a viewing transformation W the covariance matrix Σ

′

in camera coordinates is given as follows:

Σ
′
= JWσWTJT (5)

where J is the Jacobian of the affine approximation of
the projective transformation. The core approach is the
optimization step, which creates a dense set of 3D Gaussians
accurately representing the scene for free-view synthesis.

The optimization of the parameters is interleaved with
steps that control the density of the Gaussians to better
represent the scene.

The loss function is L1 combined with a D-SSIM term:

L = (1− λ)L1 + λLD−SSIM (6)

The adaptive control of the Gaussians populates empty
areas. It focuses on regions with missing geometric features
(“underreconstruction”), but also in regions where Gaus-
sians cover large areas in the scene (which often correspond
to “over-reconstruction”).



4

Fig. 4. Sparse View Experiment Pipeline

To achieve fast overall rendering and fast sorting to
allow approximate α-blending, a tile-based rasterizer for
Gaussian Splats is employed inspired by software rasteri-
zation techniques Lassner and Zollhofer [12].This is done to
pre-sort primitives for an entire image at a time, avoiding
the expense of sorting per pixel that hindered previous
α-blending solutions Kopanas et al. [13]. The rapid ras-
terizer enables effective backpropagation across numerous
blended Gaussians with minimal additional memory usage,
demanding only a consistent per-pixel overhead.

4 EXPERIMENTS

4.1 Data Generation and Preprocessing

In order to create our datasets for both the reflective object
and the transparent object, we captured 360-degree videos
to obtain a complete view of each object. As depicted in
Figure 4, we then developed a script to split the videos
frame by frame. This resulted in a total of 182 and 132 views
for the reflective and transparent datasets respectively.

One of the main objectives of our analysis is to evaluate
how 3D Gaussian Splatting handles Sparse View inputs in
comparison to Instant NGP. Consequently, we generated
two sets of sparse views for each dataset by excluding every
ith image from the full dataset, reducing the number of
views while preserving the 360-degree perspective. For the
reflective dataset, we created two sparse view datasets con-
taining 61 and 31 views, while for the transparent dataset,
we crafted sparse view datasets with 58 and 18 views.

Once all the datasets for comparison were created, they
needed to be converted into two formats for 3D Gaus-
sian Splatting and Instant NGP. For Gaussian Splatting,
we had to create calibrated cameras with Structure-from-
Motion (SfM) and initialize the set of 3D Gaussians with
a sparse point cloud produced from the SfM process [8].
This process was carried out using COLMAP [14] and
the Gaussian Splatting source code. Specifically, we had to
use the provided function named convert.py to adapt our
custom datasets to the correct format. This data was then
used to train the 3D Gaussian Splatting Model.

Concerning Instant NGP, we again utilized COLMAP.
This time to recover the camera poses and other intrinsic pa-
rameters of the input images of our datasets. To accomplish
this, we used Instant NGP’s script called colmap2nerf.py.

The converted datasets were then used to train Instant
NGP’s model.

4.2 Experiment Design
We trained both the 3D Gaussian Splatting [8] and Instant
NGP [4] models from scratch on one Tesla T4 GPU. The
implementation for both models was provided by the re-
spective researchers on GitHub. When training the models,
we used their default hyperparameters. The implementation
of the Gaussian Splatting model withheld every 8th image
in the input dataset for evaluating metrics on novel view
synthesis. Instant NGP did not do this, so we modified
the source code in instant-ngp/scripts/run.py to withhold
every 8th image in that dataset for evaluation of metrics as
well. We also added the calculation of the LPIPS metrics, as
it was not implemented in the source code. This was done
to provide a systematic and proper approach to comparing
the two methods. All metrics represent the average of the
withheld test set mentioned above. For Gaussian Splatting,
we trained for 10,000 iterations for all our datasets, and
for Instant NGP, we used 50,000 and 30,000 train iterations
on the transparent and reflective datasets, respectively. This
was done to assess how Instant NGP would perform on our
complex datasets given a similar amount of training time as
Gaussian Splatting.

5 RESULTS

5.1 Evaluation and Analysis
After training was finished, we took the averaged quanti-
tative metrics on the test sets and an example render from
the test set, so that we could analyze the result as shown in
Table 1, Table 2, Figure 5 and Figure 6. It is very important
to note the number of input views shown in the results
are the training views. This means they are the total set
of views with every 8th image withheld for the test set.
This is why the number of views is smaller than initially
described in section 4.1 as that was the total number of
images in the whole set. We use the standard PSNR, L-PIPS,
and SSIM accuracy metrics that are commonly used in 3D
scene reconstruction literature.

The overall results depicted in Tables 1 and 2, indicate a
general decrease in quality for both 3D Gaussian Splatting
and Instant NGP, as shown in the metrics. It is noteworthy



5

TABLE 1
Quantitative Comparison on Reflective Test Set Images

Method 3D Gaussian Splatting Instant NGP
Train Views 159 53 27 182 53 27

Train Time (h:m) 0:29 0:27 0:16 0:30 0:27 0:26
Train Iterations 10k 10k 10k 30k 30k 30k

PSNR 31.23 25.86 19.06 16.53 13.68 8.98
LPIPS 0.086 0.149 0.259 0.342 0.518 0.629
SSIM 0.959 0.907 0.805 0.672 0.599 0.310

Fig. 5. Qualitative Comparison on Reflective Test Set Image

TABLE 2
Quantitative Comparison on Transparent Test Set Images

Method 3D Gaussian Splatting Instant NGP
Train Views 114 50 15 132 50 15

Train Time (h:m) 1:01 0:54 0:52 0:48 0:47 0:44
Train Iterations 10k 10k 10k 50k 50k 50k

PSNR 28.32 26.56 22.88 15.35 14.42 15.01
LPIPS 0.247 0.271 0.323 0.428 0.489 0.474
SSIM 0.886 0.850 0.801 0.522 0.463 0.512

that Table 2 reveals a slight difference where the metrics
are superior at 15 views compared to 50 views for Instant
NGP. This discrepancy may be attributed to the smaller
number of images in the test set for the 15-view experiment.
However, 3D Gaussian Splatting consistently outperforms
Instant NGP in all of the experiments. One of the reasons
behind this is because Instant NGP excels in scenes with
high geometric detail but sacrifices quality when handling
complex datasets with reflections or transparent objects.
This trade-off is associated with the much smaller MLP
required in Instant NGP to achieve the training speedup,
as discussed in [4]. The findings underscore that 3D Gaus-
sian Splatting exhibits greater potential for delivering high-
quality results with fast training time, even in the face of
complex datasets and sparse views. This aspect stands in
contrast to the compromise between quick training and

Fig. 6. Qualitative Comparison on Transparent Test Set Image

quality for NeRF models such as Instant NGP.
In Figures 5 and 6, we highlight some of the areas where

both models seem to struggle the most. In Figure 6, you
can observe that Gaussian Splatting does not obviously fail
anywhere until we reach the 15-view experiment, where it
is evident that it encounters challenges with the background
in the top half of the photo. This may be attributed to
insufficient information to generate a proper novel view of
the background at that angle or the complexity of the scene
in the background. Turning to the transparent qualitative
comparison for Instant NGP, we observe that even with
a full view the model encounters difficulty rendering a
high-quality image. In all cases, it struggles to create the
bottom half and the right half of the image. Similar to
Gaussian Splatting, it also faces challenges in rendering
the background. The Instant NGP model also struggles at
creating a novel view, providing a render not at the same
exact angle as the ground truth, which was verified to be
what the model was trying to render. This may be due
to the complexity of the scene or instant NGP struggles
more with novel view synthesis than 3D Gaussian Splatting.
In Figure 5, 3D Gaussian Splatting excels at rendering the
reflective object in all view cases but encounters challenges
with more of the background and the bottom of the image.
This difficulty may be attributed to the non-uniformity and
curvature of the stool’s legs shown in the bottom half of
the reflective image set. Instant NGP performs extremely
poorly in Figure 5, which we discuss in more detail in the
next section of our paper.

6 DISCUSSION

One of the intriguing aspects of this study was the differen-
tial performance of InstantNGP NeRF on reflective versus
transparent surfaces. The relatively poorer performance on
reflective surfaces could be attributed to the inherent com-
plexity in modeling specular reflections. Reflective surfaces
often require a more nuanced understanding of light interac-
tion, which can be challenging for NeRF-based models like



6

InstantNGP to capture accurately, particularly under sparse
view conditions. In contrast, transparent materials, while
complex, may present less variability in light interaction,
allowing NeRF models to approximate their properties with
greater accuracy even with limited data.

The compute resources employed in this study played a
crucial role in our experimental setup and outcomes. The
initial use of an i5 4th gen processor, 8 GB RAM, and
an Nvidia MX 150 GPU for running COLMAP for SfM
(Structure from Motion) and MVS (Multi-View Stereo) set
certain limitations, particularly in terms of pre-processing
speed. This hardware configuration, while adequate for
basic processing, might not fully exploit the potential of
more advanced NeRF models. However, the subsequent use
of Google Colab’s Tesla T4 GPU for training provided signif-
icant computational power, enabling more robust training
of the models. With the focus on comparing the model’s
performances against each other, the pre-processing time
was not highlighted in the Results section, which helped
in a fairer comparison.

The superior performance of Gaussian Splatting in
sparse view scenarios, particularly in comparison to In-
stantNGP, can be attributed to its operational methodol-
ogy. Gaussian Splatting employs techniques like leveraging
anisotropic covariance in the optimization of 3D Gaussians
and a fast visibility-aware rendering algorithm. These meth-
ods facilitate more accurate scene representation and faster
rendering, which are crucial in sparse view conditions. The
anisotropic covariance optimization helps in better captur-
ing the scene’s details, even with fewer data points. The
visibility-aware rendering algorithm supports this by accel-
erating both the training process and real-time rendering,
further enhancing the performance of Gaussian Splatting in
scenarios with limited view availability.

6.1 Future Work

In future research, it would be valuable to focus on en-
hancing the computational efficiency of Gaussian Splatting,
aiming to further reduce the training time. This could in-
volve optimizing the current PyTorch-based optimizer and
refining GPU usage for more efficient processing. Addition-
ally, experimenting with the 3D Gaussian representation
itself presents an interesting avenue. Exploring different
distribution types, such as skewed distributions, could po-
tentially improve scene representation, especially in chal-
lenging scenarios like sparse views. Finally, a comparative
analysis of a sparse view specialized variant of Gaussian
Splatting and Sparse-NeRF, would provide deeper insights
into the efficacy of various approaches when dealing with
limited data. These areas of investigation could significantly
contribute to the advancement of 3D rendering techniques,
particularly in optimizing performance under constrained
conditions.

7 CONCLUSION

This comparative study of 3D Gaussian Splatting and In-
stantNGP reveals that Gaussian Splatting significantly out-
performs InstantNGP in rendering sparse views, especially
in scenarios involving reflective and transparent surfaces.

It maintains higher image quality, as evidenced by su-
perior PSNR values, within the same training duration.
Meanwhile, InstantNGP demonstrates notable challenges
with reflective surfaces under sparse view conditions. These
findings highlight the potential of Gaussian Splatting for ef-
ficient and high-quality 3D rendering and underscore areas
for improvement in NeRF-based models like InstantNGP.

REFERENCES

[1] S. M. S. Noah Snavely and R. Szeliski, “Photo tourism: exploring
photo collections in 3d,” SIGGRAPH, 2006.

[2] B. C. H. H. Michael Goesele, Noah Snavely and S. M. Seitz.,
“Multi-view stereo for community photo collections.” ICCV, 2007.

[3] B. M. P. S. E. T. W. C. L. V. S. R. M.-B. Ayush Tewari, Justus Thies
and S. Lombardi, Advances in neural rendering. Wiley Online
Library, 703-735, 2022.

[4] T. Müller, A. Evans, C. Schied, and A. Keller, “Instant neural
graphics primitives with a multiresolution hash encoding,” ACM
Trans. Graph., vol. 41, no. 4, pp. 102:1–102:15, Jul. 2022. [Online].
Available: https://doi.org/10.1145/3528223.3530127

[5] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ra-
mamoorthi, and R. Ng, “Nerf: Representing scenes as neural
radiance fields for view synthesis,” 2020.

[6] D. V. P. P. S. Jonathan T. Barron, BenMildenhall and P. Hedman.,
“Mip-nerf 360: Unbounded anti-aliased neural radiance fields.”
CVPR, 2022.

[7] M. Gross and H. E. Pfister, Point-based graphics. Elsevier, 2011.
[8] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3d gaus-

sian splatting for real-time radiance field rendering,” 2023.
[9] M. M. D. P. Matthias Teschner, Bruno Heidelberger and M. Gross,

“Optimized spatial hashing for collision detection of deformable
objects,” in In Proceedings of VMV’03, Munich, Germany. 47–54,
2003.

[10] J. L. Schönberger and J.-M. Frahm, “Structure-from-motion re-
visited,” In Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[11] J. V. B. Matthias Zwicker, Hanspeter Pfister and M. Gross, “Ewa
volume splatting.” in Visualization, 2001. VIS’01. IEEE, 29–538.,
2001.

[12] C. Lassner and M. Zollhofer, “Pulsar: Efficient sphere-based neural
rendering,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 1440–1449, 2021.

[13] T. L. Georgios Kopanas, Julien Philip and G. Drettakis, “Point-
based neural rendering with per-view optimization,” Computer
Graphics Forum, vol. 40, no. 4, pp. 29–43, 2021. [Online]. Available:
https://doi.org/10.1111/cgf.14339

[14] J. L. Schönberger, E. Zheng, J.-M. Frahm, and M. Pollefeys,
“Pixelwise view selection for unstructured multi-view stereo,” in
Computer Vision – ECCV 2016, B. Leibe, J. Matas, N. Sebe, and
M. Welling, Eds. Cham: Springer International Publishing, 2016,
pp. 501–518.


