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Motivation Prompt design: Methods

Improving underwater images is essential for 1. Colorfulness: “Vibrant and Vivid”, to restore the natural color often dimmed by water.
marine research and exploration. 2. White Balance: “Accurate Color representation”, to correct the prevalent que/green color cast.
3. Exposure: “‘Well-lit and clear”, to discern fine details and ensure the scene’s clarity.
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Figure 2. the distribution of positive scores for contrastive pairs, comparing raw and reference images from the UII;B d;taset
Recent advancements with the CLIP[2] model Overview of the Mode:
showcase its ability to bridge images and text, Our approach employs a pretrained WaterNet as the base model, subsequently enhanced through
understanding and correlating visual content with a dual loss strategy with CLIP's contrastive pair and perceptual losses. The model is trained on
linguistic descriptions. the UIEB dataset with various contrastive pairs and then evaluated using the LSUI dataset [4].
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The pretrained CLIP model can effectively assess
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and low-quality images, due to its training on ;
o g dy . J tocets 14 J WhiteBalance-Enhanced 20.490 0.839 0.332 0.549 0.559
extensive and diverse datasets [3]. Exposure-Enhanced 21.202 0.830 0.407 0.230 0.618
i . i Table 1. the performance metrics of various models on the LSUI dataset. It uses PSNR and SSIM for comparative analysis with reference images. It also
We intend to enhance WaterNet by mcorporatlng includes positive scores for colorfulness, white balance, and exposure, based on contrastive pairs of images produced by each model.
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WaterNet[1] was proposed alongside the UIEB
dataset. It excels in reconstructing underwater
images to closely match reference images.

The CLIP[2] model represents a breakthrough in
contextual understanding of images. Trained on
extensive image-text pairs, it has the unique ability
to correlate visual content with textual descriptions.

V - 3 % -
. 3 3

> W \ > 2 X &

% = . - = -

S . - .

3 & < B - . - 5 D &

- - "-.. ~ g - i e— ~ i - . ~ s - -
] % . o A - S :

QOTAGE OIAGE QOTAGE - QOTAGE "~ QOTAGE -

The CLIP-LIT[3] underscores CLIP's potential in
unsupervised backlit image enhancement.

LSUI Dataset[4]: Encompassing 4,279 paired
underwater images, LSUI offers a comprehensive
range of scenes, lighting conditions, water types,
and target categories.
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Figure 5. Enhanced underwater images. Color, white balance, and exposure enhancement are processed by different enhanced waternet.



