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Motivation

Monocular 3D human pose estimation is a critical computer vision task that mainly 2D Human Pose Estimation

entails predicting 3D pixel coordinates of key body joints based on a 2D image or
video.

Current 3D human pose estimation process typically first estimate 2D positions of
human body key joints using off-the-shelf 2D human pose estimation models. The
resulting 2D estimations are then passed to the 3D human pose estimation model
as input to estimate the corresponding 3D key joints positions.

Various 2D human pose estimation models [4, 5, 6, 7] have been proposed lately,
and their potential to serve as less noisy 2D input for 3D human pose estimation

 These models receive a single RGB image as .
input, and output locations of key joints in 2D '
pixel coordinate.

CPN [3] uses feature pyramid networks to
identify features and then refines the occluded
keypoints using a RefineNet module.

TransPose [5] and ViTPose [6] use vision
transformers to encode the image.

These models lifta sequence of
2D poses to 3D pose sequences.

PoseFormerV2 [1] leverages
frequency-domain representation
to infer 3D poses robust against
sudden movements in noisy
data.

models remains unexplored. |
MogaNet [4] proposes a new ConvNet structure,

and PCT [7] proposes a structured
representation to explore the joint dependency.

Our study aims to evaluate the performance of recently proposed 2D human pose
estimation models on 2D-3D human pose lifting, and enhance the 2D-3D lifting
results by merging outputs (2D positions of key joints) of these models.

Use recent 2D human pose estimation models which are trained on MS COCO
keypoint dataset to estimate 2D keypoints on Human3.6M dataset. Convert the
resulting 2D keypoints estimations from MS COCO to Human3.6M format.

MS COCO Keypoint Format Human3.6M Keypoint Format
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e Apply 3 strategies to merge different 2D keypoints estimations:

 Manual merging: For each joint, select the best 2D estimation based on least mean
distance compared to the 2D ground truth (acquired through camera projection).

« Average merging: For each frame, average the outputs from 2D estimators.

 Weighted average merging: Take weighted average based on the confidence score
generated by 2D estimators.
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Train PoseFormerV2 [1] using different 2D keypoints estimations and 3D ground
truth. Evaluate models’ performance for the task of 2D-3D human pose lifting.
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estimated 3D keypoints on Human3.6M after training the
PoseFormerV2 model using different 2D estimations.

Qualitative Results
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Figure 2. The mean per-joint position error (mm) between
each tested 2D estimator and the 2D ground truth.
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Figure 3. Qualitative comparisons of estimated 3D keypoints on Human3.6M after training the PoseFormerV2
model using different 2D estimations. The transparent gray skeleton is the ground-truth 3D pose.
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