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Motivation

Challenges in Image Restoration

Digital images often suffer from blur and
noise, impacting clarity and usefulness,
especially in critical areas like medical
imaging and satellite photos.

Limitations of Current Methods

Most existing solutions work in the spatial
domain, adjusting pixels directly, while
methods works in the frequency domain
have not been fully studied.

Advantages of Frequency Domain

The frequency domain representation
allows for more effective separation and

New Technique

 Frequency Domain Image Processing
Novel processing pipeline for deblurring and denoising images in the
frequency domain.

 Real and Imaginary Component Integration
Integrated real and imaginary parts of image components in Fourier
domain during image pre-processing phrase to gather as much image
information as possible.

* Attention Mechanism in Frequency Domain
Distinguished between low-frequency blur and high-frequency noise by
attention mechanism to better localize image recovery zone.

* Optimized Performance in Frequency Domain
Utilized Attention R2U model structure to enhance deblurring and
denoising performance.
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Related Work

« The Vision Transformer (ViT) architecture
has been shown remarkable success in
Image restoration. However, it needs more
data than CNN methods to achieve satisfying
results [1].

As a powerful variant of CNN, U-Net [2] has
also been applied to image denoising tasks.
Alom et al. proposes R2U-Net [3] for image
segmentation that combines residual connec
tion, RCNN and U-Net. Oktay et al. [4]
Proposed a novel attention gate (AG)
model for medical images.

We combine the architecture of these two
UNet-based models and apply it in our
iImage restoration task.
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