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Motivation New Technique

* Understand if Text to Video Models are capable . Used basic sequences to trial different architectures to see which solution held promise
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ime (AoT). AoT is the irreversible direction o camera stabilization, artificial cues, or optical flows

time flow, events such as a bottle breaking L o
would not happen in reverse « Selected UCF-101 as the best dataset to minimize camera stabilization

ModelScopeT2V [2] was released in 2023 by
Alibaba group as a text to video model
(Available on Hugging Face)
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Implications of improper AoT include poor
communication of instructions, worsening of
social media trust, poor media production,
unable to increase FPS as poor AoT (DLSS like
technologies for future upscaling)
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- Custom classifier training achieved 86% on training set and 78% on test set of UCF-101
dataset

* Videos critically in test set have a balanced prediction between forward and backward videos.
Related Work Forward and backward videos are correctly and incorrectly predicted in equal proportion

- In 2014, “Seeing the Arrow of Time” [3] Experimental Results

explored 125 forward videos and 25 reverse . Experiment 1: Generate 4 Videos (2 forward + 2 backward) for each of the 95 categories
videos, predominantly featuring physics related in UCF-101

content such as gravity, friction and entropy.

Achieved 90%. 77% and 75% on test sets  Experiment 2: Select 10 categories (5 Top + 5 Bottom) from Experiment 1, and generate

10 videos for 5 different prompts for each direction

In 2018, “Learning and Using the Arrow of « Experiment 3: Select 15 categories (5 Top + 5 Chance + 5 Bottom) from Experiment 1,
Time” [4] took broad range of video datasets and generate 10 different videos for 10 different prompts for 5 different length of prompts
normalized FPS, eliminated artificial elements * Fine-Tune Model model with videos generated from Experiment 3, to see if forward videos
(black bars), and stabilized camera motion. follow temporal direction. 74% on forward test set, indicates temporal understanding
Classifier used 2D convnets and optical flows.
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Conclusion

Our experiments suggest forward generated videos by ModelScopeT2V follow AoT, but reverse prompts are struggling to create realistic videos. More
experiments should be conducted for validation, including improving accuracy of classifier, larger datasets and increased training on reverse prompts.




