Composite Inpainting
Addressing Shortcomings in GAN and Patch-Based Inpainting with a Hybrid Approach
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Motivation Methods
Deep learning-based inpainting models such  We implemented a multi-scale patch nearest neighbor (MPNN) method based on the architecture
as generative adversarial networks (GANs) and of GPNNI3] using the patchmatch algorithm.
stable diffusion offer state of the art generation o Low scale — generate structure
of realistic content in complex scenes using o High scale — generate texture
contextual surroundings. There exist, however,
drawbacks for each method: GANs are difficult * Qutputs of GAN and MPNN were composited using high-pass filter weighed blending to
to train and often fail to capture textures maximize texture density.
effectively [1]; Stable diffusion is prone to « Gabor filtering and refined patch nearest neighbor (RPNN, using coarse GAN output as PNN
hallucinations [2]. Input) were also explored as alternative compositing methods.
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Left: A partial hand hallucinated by stable diffusion Multiscale Patch Nearest Neighbor (MPNN)
Right: Distorted and blurry fence texture created by DeepFill GAN
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Classical patch-based methods reportedly Sl MPNN output

excel at replicating textural details such as
architectural features and repeating patterns,
but encounter difficulty when generating larger
structurally consistent content [1][3]. These
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patch-based methods in hopes of leveraging
their  strengths and  minimizing their F
shortcomings to improve both structural and il il
textural consistency.

Experimental Results
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* Free-Form Image Inpainting with Gated
Convolution presents a novel system using
gated convolutions and SN-PatchGAN,
enhancing Inpainting quality and color
consistency over prior methods [4].

= Generative  Patch Nearest-Neighbor
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GPNN adopts SINGAN's multi-scale
architecture while replacing the generator
and discriminator with patch nearest-

neighbor modules [3].
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= Latent diffusion models (LDM) introduced
by Rombach et al. enhances efficiency and
guality in high-resolution image synthesis
and inpainting [5]. The runwayml/stable-
diffusion-inpainting model used In
our comparison is based on this model.
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= Gabor filters are recognized as a prominent
method In texture classification applicable in
textural analysis for inpainting. Bianconi et al
[6] examine the impact of various Gabor
filter parameters on texture discrimination.
Their research Iindicates that while
Increasing frequencies and orientations has
limited effect, smoothing parameters
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Mean Statistics for Single and Hybrid Methods (* denotes hybrid methods)

significantly enhance classification GAN MPNN  Diffusion  *High pass *Gabor *RENN
formance MSE 890.1 715.2 997.3 809.3 723.1 655.3
per ' SSIM 0.908 0.912 0.907 0.909 0.911 0.914
PSNR 18.6 19.6 18.1 19.0 19.5 20.0
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