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Motivation Method for Edge Case/Sparse View Reconstruction

« 3D Gaussian splatting (GSplats) is a technique used

In novel view synthesis that involves projecting and
blending 3D scene information onto a new viewpoint e ey i Convert Images into MVS
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using Gaussian distributions, providing a realistic
representation of the synthesized view. It has shown
to be 50 times faster than SOTA NeRF models, while
keeping high-quality renders.

Instant NGP (Neural Graphic Primitives) is a method {

that employs neural networks to predict and render
3D graphic primitives directly in the image space,
enabling high-speed and high-quality generation of
novel views with improved realism. It has proven to Figure 3: Reconstruction Workflow
be one of the fastest NeRF models, which makes it

suitable for comparison to GSplats.

18 Images

The (gaussian splatting) models' ability to produce s
novel views haven't been explored for uncommon > &0
situations such as: transparent objects, reflective )Ll ; e 0/010
surfaces and sparse (incomplete) image sets. IS " : p L - 3988-
R ~ / '\ Differentiable | —» - l'] o,___——/
.__:. —» | Initialization | — ; Tile Rasterizer | €— | 'mase 3 6 i E O O O
SFM Points 3DGaussians\ Den‘:iapg::tml ‘/ . . 5 } o0
¥ | — Operation Flow ~ — Gradient Flow x — l ? g ; .
(1) Hashing of voxel vertices (2) Lookup  (3) Linear interpolation  (4) Concatenation (5) Neural network
Figure 4: Overview of 3D Gaussian Splatting Algorithm Figure 5: Overview of Instant NGP Algorithm
Figure 1: Transparent Water glass Figure 2: Reflective Water bottle
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sparse view inputs.
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Neural Radiance Fields (NeRFs)

« Optimizes a Neural Network to represent a 5D
scene representation.

« Training process Is time consuming, requiring a
substantial quantity of images.[1] 3D Gaussian Splatting

Instant NGP (Neural Graphic Primitives)

* Model uses a multiresolution structure for making
an architecture that is trivial to parallelize on
modern GPUSs.

The slow computational performance from
COLMAP to training of neural networks can lead to
long experiment times.[2]

3D Gaussian Splatting

« Anisotropic 3D Gaussians are introduced as a high-
guality unstructured representation of radiance
flelds. Figure 6: Qualitative Analysis w/ Reflective Dataset Figure 7: Qualitative Analysis w/ Transparent Dataset
A fast differentiable rendering approach for the
GPU is used which allows anisotropic splatting and
fast back-propagation to achieve high quality novel
view synthesis.

3D Gaussian Splatting

Instant NGP Instant NGP

. . . . . Method Views PSNR LPIPS SSIM Training Time | Training Method Views PSNR LPIPS SSIM Training Training
 The memory consumption is significantly higher (hom:s) | iterations Time (him:s) | Iterations
. 3D Gaussian Full 31.23 0.086 0.959 0:29:47 10000 3D Gaussian Full 28.32 0.247 0.886 1:01:21 10000
than NeRF-based solutions. [3] splatting <50 25.86 0.149 0.907 0:28:08 10000 splatting <50 26.56 0.271 0.850 0:54:01 10000
<30 19.06 0.259 0.805 0:16:03 10000 <30 22.88 0.323 0.801 0:52:39 10000
Full 16.53 0.342 0.672 0:30:39 30000 Full 15.35 0.428 0.522 0:48:21 50000
Instant NGP <50 13.68 0.518 0.599 0:27:09 30000 Instant NGP <50 14.42 0.489 0.463 0:47:02 50000
<30 8.98 0.629 0.310 0:26:37 30000 <30 15.01 0.474 0.512 0:44:22 50000
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