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Imaging Denoising 
• One of the many tasks in the Image Signal 

Processing Pipeline

• Removes noise while retaining visual details of an 
image

Dataset: Smartphone Image Denoising Dataset (SIDD) [1]

Major Contributions
• Investigate pixel-wise noise correlation on a size of 21x21 as image prior

• Rework code provided by SSID into a well-designed library to allow easy switching of 
BNN and LAN models

• Perform additional ablation studies to identify model significance and interpretability

• Replace model components with other SOTA parts to explore model interchangeability
• LGBPN-related

• (1) - Replace LGBPN’s Local Branch with SSID’s BNN
• (2) - Replace concatenation fusion with average fusion
• (3) - Replace DCL layers by DTB and lower the number of DTB from 6 to 3 to 

reduce model complexity
• (4, 5) - Only use LGBPN’s Local (4) / Global (5) Branch

• SSID-related
• (1) - Replace SSID’s BNN with LGBPN’s Local Branch
• (2) - Replace LAN’s loss function to supervise from the noisy image instead of 

BNN’s results
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Correlation Map between image pixels

• Noise are mostly correlated within a 
9x9 receptive field

• We observe an unexpected fluctuation 
pattern of noise outside the 9x9 
receptive field

Local and Global Blind-Patch Network (LG-BPN) [2]

• Uses two branches to capture local and global 
features simultaneously

• The global branch captures a receptive field of 
21x21, which is very expensive

Why Self-Supervised Learning?
• Existing works rely on adding synthetic Gaussian 

noise for supervised training, which is not realistic

• Obtaining a real-world dataset for supervised 
training is labor intensive and time-consuming

Spatially Adaptive Self-Supervised Learning for 
Real-World Image Denoising (SSID) [3]

• A three-stage model that balances features between 
flat and texture regions

• We leverage the modularity of the three-stage 
model and replace its components with some SOTA 
model parts
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1 model_bnn = SSID_BNN(args.bnn_cfg_path)
2 model_lan = SSID_LAN(args.lan_cfg_path, model_bnn)
3 model_unet = SSID_UNet(args.unet_cfg_path, model_bnn, model_lan)
4 model_unet.train()

PSNR SSIM

LGBPN (Original) 37.280 0.9360

LGBPN (1) 33.546 0.8446

LGBPN (2) 37.138 0.8858

LGBPN (3) 36.798 0.8810

LGBPN (4) / SSID (1 - Stage 1) 36.038 0.8629

LGBPN (5) 36.212 0.8614

SSID (Original) 37.390 0.9340

SSID (1) TBD (Stage 3 In Progress)

SSID (2) TBD

Model Results


