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Abstract—In this project, we are going to investigate the deep image prior method for blind image deblurring. The current method uses
two randomly initialized networks to model the latent clean image and blur kernel. Both networks are optimized by reconstructing the
blurry input image via the blurry image formation model for a fixed number of iterations. There are several drawbacks observed for the
existing work, 1) lack of direct supervision on the latent clean image; 2) non-adaptive and sub-optimal early stopping policy to prevent
the model from overfitting. Several potential improvements are proposed using a pre-trained deblurring network as a weak supervisor
to provide direct supervision and an early stopping strategy. Code: Project code.

Index Terms—Blind Image Deconvolution, Deep Image Prior, Self-supervision

1 INTRODUCTION

NAVOIDABLE factors such as camera shake, object

motion, inaccurate focus, etc., always result in blurry
images. Such blurry artifacts not only degenerate the image
fidelity for human viewers but also degrade the down-
stream computer vision tasks (e.g., image classification [1],
object segmentation [2], etc.). Removing such blurry artifacts
and restoring the latent clean image is extremely challenging
as the convolution operation is hardly invertible. Despite its
highly ill-posed properties, it has been a popular research
topic and extensive efforts have been devoted over the
past decades [3], [4]. With the unprecedented increase in
computational budget, deep models have achieved superior
performance in many tasks [1]. Deep models also contribute
to the image deblurring task and set the state-of-the-art
results in various settings, including blind image deblur-
ring [5].

Popular and effective methods involving deep models
for image deblurring are end-to-end training paradigms
[6]. The models are optimized iteratively on a large-scale
dataset with input-output pairs (blurry and clean image
pairs) [7]. The models are expected to learn deblurring cor-
respondence and encode such knowledge in their weights to
achieve generalization on unseen testing images. The main
limitation of this research stream is that the same trained
model is employed for all testing scenarios. As each image
exhibits its own statistics, these generic models may perform
poorly when the test data distribution does not match the
training ones [8]. Furthermore, additional artifacts may be
introduced with incomplete blurry removal.

A recent method that performs optimization on each of
the blurry images is proposed (SelfDeblur) [9]. SelfDeblur
is inspired by the concept of Deep Image Prior (DIP) [10]
which is optimized to reproduce the degraded image. The
main observation of DIP is the high noise impedance prop-
erty of neural networks. Based on the observations and it
is validated that the neural network is more capable to
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Fig. 1. High level illustration of SelfDeblur [9]. The latent clean image
is only the intermediate result, while the network optimization is done
at the final outputs. It is not guaranteed that optimizing the final output
leads to an improvement in intermediate results.

model natural images than noises. In other words, dur-
ing the process of reconstructing the degraded image, the
neural network will produce a clean natural image first.
Following a similar trend, SelfDeblur utilizes two separate
neural networks with random noises as input and produces
the latent clean image and blur kernel simultaneously. The
blurry image can be reconstructed via convolution operation
using two outputs. A high-level illustration of SelfDeblur is
shown in Fig. 1.

Several observations on SelfDeblur can be observed.
First, the optimization is based on the reconstruction loss
by evaluating the output blurry image. However, the ex-
pected clean image is only the intermediate result. As shown
in [11], there is a misalignment between the quality of
intermediate and final results. And ignoring the supervision
of the intermediate results will degrade the intermediate
results but improve the final output in an end-to-end learn-
ing framework. In analogy, in the work of SelfDeblur, the
intermediate supervising is missing, thus, the misalignment
of performance between two outputs persists. On the other
hand, both networks are randomly initialized and expected
to fit only the specific data. Without learning abundant



features from large-scale training may results in limited
prior. Last but not least, a stopping criterion is difficult to
be determined as the assessment of the expected output is
impractical. Therefore, SeflDeblur uses a fixed number of
iterations for all images which might be sub-optimal.

In this work, we investigate several potential improve-
ments that could be helpful on top of SeflDeblur. Inspired
by [12], instead of ignoring the middle supervision, a re-
laxed loss function with error tolerance is able to improve
the final outputs. However, in our case, the clean image
is not obtainable to guide the intermediate results. Follow
the work in Semi-Supervised Few-Shot Classification [13],
pseudo labels can be provided by a trained network to
utilize unlabeled data. We utilize a deblurring network pre-
trained on the large-scale dataset to generate a pseudo-clean
image as a surrogate ground truth. An adaptive stopping
method is also developed to balance the trade-off between
training time and image quality.

To sum up, the contributions of this work are as follows:

o We propose to utilize a pre-trained deblurring net-
work to weakly supervise the intermediate latent
clean image.

o Early stopping methods are investigated to reduce
the iteration numbers.

e Other techniques are also investigated for potential
improvement.

2 RELATED WORK

Image Deblurring. Deep neural networks (DNNs) have
been widely employed for image deblurring. Some early
works utilize DNNs as separate modules in the conven-
tional optimization-based framework [14], [15], [16], [17].
For example, DNNs are used to only predict the complex
Fourier coefficients of the blur kernel [17]; to estimate the
motion information of blury images [16]. With the proposal
of large-scale deblurring dataset, end-to-end traning meth-
ods are more favoured. Nah et al. [7] proposed a multi-scale
architecture to progressively restore the latent sharp image.
Since then, various networks were proposed under end-to-
end manner and set the state-of-the-art.

Weakly Supervised Learning. Getting strong supervision
is sometime impractical as some task may require intensive
human labeling. Weakly supervised learning can be divided
into different categories, such as incomplete supervision
where a subset of the data is unlabeled [13]; inexact su-
pervision, where the training data are given with only
coarse-grained labels in a hierarchical label setting [18];
inaccurate supervision, where the obtained label cannot be
fully trusted [19].

3 PROPOSED METHOD
3.1 Preliminaries

In this work, we mainly focus on the task of blind image
deconvolution where the blur kernel is unknown. We start
from the image degradation model:

y=x+*H+N, @)

2

where x, y and N are the clean image, degraded image and
noise, respectively. H and * are the task-dependent degra-
dation function and operator. For example, for blury image
formation, H is the blur kernel and * is the convolution [7].
while for image in-painting, H can be a mask image and *
is the element-wise multiplication [20].

To restore a degraded image, we aim to develop a
restoration method denoted as function f(-). When given
a degraded image y, it generates a restored image x = f(y)
that is closer to the ground truth clean image x. For deep
learning-based method, especially the end-to-end ones, we
denote the mapping function parameterized by 6 as fo(-).
For learning-based methods, fy(-) is learned from large-
scale degraded/clean image pairs, so that the restoration
prior or knowledge is encoded in the weights 6 [21]. The
models are normally iteratively optimized by a loss function
which measures the distance between expected output and
ground truth.

As an alternative research direction, Deep Image Prior
(DIP) [10] finds that an untrained deep model is also capable
to capture some of the low-level statistics of natural images.
In such setting, the neural network is going to reconstruct
the input degraded image and allows the network itself to
learn natural clean image in the middle of training. Given
each degraded image, the optimization of DIP is formulated
as:

0" = argrrgn E(fo(2);y), y° = fo-(2). )

E(-) is the data fidelity term, which normally aims to mini-
mize the distance between two inputs, therefore, making the
network outputs closer to the given data. z is the noise that
follows Gaussian Distribution.

Through iterative optimization of Eq. 2. The network
fo(z) aims to reproduce the degraded image. However,
as discovered in [10], such parametrization offers high
impedance to noise but low impedance to signals. In other
words, the optimization process produces natural clean im-
ages first before fitting to the degraded image. Thus, an early
stopping for such degradation reconstruction optimization
leads to a image restoration solution. It has been shown the
effectiveness on restoration tasks, such as image denoising,
super-resolution, in-painting.

However, for the task of blind image deblurring, DIP is
degenerated as it has the limitation on capturing the prior
of blur kernels [9]. Thus, two separate generative networks
G, and Gy, are proposed to replace fy. G, aims to capture the
image prior, while G, is expected to model the blur kernel
k. The optimization is then becomes:

: 2
i [19()  Ga(z0) ~ I ®
where 2, and z, are the input noise for each generator
and ® is the convolution operator. The goal of Eq. 3 is to
generate a clean image and the corresponding blur kernel
so that they can be transformed into the input blurry im-
age via blur degradation model. Note, such supervision is
self-supervised without any ground-truth clean image. We
denote the loss term in Eq. 3 as reconstruction loss £,.
There are several drawbacks observed:

e The clean image is the intermediate output of the
whole system, but the supervision is applied to the



Pretrained network G,
Freezed

/

'—r_J
\Randomly initialized gy

Noise z,

Latent clean image

G (2z)

Test blurry image

Early
stop?

UL LN DORATE LI

Convolution

Kernel

Gr (k)

Noise 2,

Randdmly
initialized
Gr )

Fig. 2. Overview of the proposed method. The latent clean image and blur kernel are learned by reconstructing the test blurry image via blurry
image formation model. Build up on this framework, we utilize a pretrained deblurring network to deblur the input image and treat its output as a
weak supervision to supervise the intermediate clean image. Early stop strategy is also investigated.

final reconstructed blurry image. It leads to indirect
optimization of the expected output, and the training
objective and evaluate protocol do not match.

o Different input blurry images may require different
number of iterations. The current method has a
fixed iteration number for all images, which is sub-
optimal. Although the intermediate output is con-
strained by the reconstruction loss, its convergence
cannot be guaranteed.

3.2 Weakly Supervised Learning

In this project, we are going to explore if providing a
supervision directly at the expected output is beneficial.
Concretely, the direct supervision on the expected interme-
diate output might enhance the prior extracting process.
However, the only available information is the degraded
input image y, which reduces the flexibility of such method.

To alleviate such problem, we follow the self-training
method [13], which use the trained model to label the
unlabeled data. Specifically, we employ a deep model G,
that is trained on a large-scale dataset for the deblurring
task:

x = Gp(y)- 4)

We name X as the surrogate ground truth which is the
deblurred version of y using G,,. Although x highly depends
on the architecture of G, and the training dataset, and may
contain defected results, it has learned through abundant
data samples to extract features. X can be used as a weak
supervision to guide G, (z,). Therefore, we propose to add
the following loss:

['weak - E(gx(zm)v)_() (5)

E measures the distance between G (z,) or x which can be
L1/L2 norm, or other similarity metrics.

Note, x also represents the knowledge of the trained
model G,. Thus, using Eq. 5 is analogy to the knowledge
distillation technique [22]. Specifically, the knowledge of a
well-trained model is transferred to a model with lower
learning capability. In our case, we aim to transfer the
deblurring features from a model learned with large-scale
dataset.

3.3 Early stopping

The implementation of SelfDeblur has a fixed number of
iterations for all images (e.g., 5000). It might be sub-optimal
in terms of cost-performance tradeoffs. In addition, differ-
ent blurry images exhibit various difficulty levels, thus, its
needed to investigate a stopping strategy.

In this work, we investigate a simple stopping criteria
which looks at the stability of the training process. We define
a sequence of training data (e.g. training loss) {e1, €2, ..., en },
where n is the n'” iteration. The training is stopped if:

e, = min{e,, €2, ..., ntw}, (6)

where w is the size of sliding window. Eq. 6 means if the
training data e,, is not decreased further for the next w
iterations, the training will stop.

3.4 Further investigation

Eq. 3 measures how close the reconstructed image compared
to the input blurry image. Intuitively, if they are close to
each other, they should also be close when transform by a
function (e.g. a trained network). So a further investigation



can be conducted is to pass both images to a deblurring net-
work and optimize to reduce the distance between outputs.
We utilize such method as a regularization as:

Lreg = ”gp(y) - gp@)”ga (7)

where ¢ is the reconstructed blurry image. Eq. 7 mea-
sures how the reconstructed image can be deblurred by
a pretrained network. Its effectiveness is validated in the
experiment section.

4 EXPERIMENTAL RESULTS

Dataset: Due to the limitation on both time and compu-
tational resource, we follow SelfDeblur to evaluate our
method on Levin el al. dataset [23]. It contains 4 clean images
and 8 blur kernels. Each image is convolved with all the blur
kernels to generate the 8 blurry images. Therefore, there are
32 blurry images with resolution of 256 x 256.

Pre-trained deblurring network: We utilize two network
pre-trained on large-scale dataset: DWDN [24] which is
trained on 5,000 images and DMPHN [25] which is trained
on 2000 images in GoPro dataset [7].

Implementation details: We follow the same training and
evaluate environment as SelfDeblur. Specifically, the input
are initialized as Gaussian noise. Adam optimizer is used,
and the initial learning rate is set to 0.01 with decay by a
factor of 0.5 at 2,000, 3,000, 4,000 iterations. For evaluation,
we use PSNR and SSIM to assess the quality of output clean
image. Note, the blur kernel is unaware of the directions, the
output image might be misaligned with the ground truth
clean image. Therefore, we follow SelfDeblur to use a small
search window (5) to do a match.

Training objectives: We combine the loss functions we
discussed in the previous section with different weights as:

L= ["r o aﬁweak 5t ﬁﬁreg- (8)

a and [ balance the contribution from different concepts.
We test different weighting values in the next section. As
in SelfDeblur, after 1500t" iteration, £, is switched to 1 —
SSIM.

Early stopping: We the criteria for e regarding the early
stopping policy as MSE between y and g

5 EXPERIMENTS

In this section, we first conduct some ablation studies to
evaluate different components and hyper-parameters. We
then compare with the state-of-the-art methods qualitatively
and quantitatively.

5.1 Ablation studies

Pre-trained networks and balancing weights: We first
check the performance of two pre-trained methods
(DWDN [24] and DMPHN [25]) and different values of
a. We keep 3 = 0 to ignore L,., for this experiments.

Table 1 and Table 2 show the resulting PSNR and SSIM.
Several conclusion can be drawn from these tables. 1) The
deblurring quality of DWDN [24] and DMPHN [25] is quite
low, that might due to the distribution shift between training
and testing data. 2) Although they are under-performed,

TABLE 1
PSNR/SSIM values with weakly supervision of DMPHN [25] with
various values of a.

DMPHN a=1 a=01 a=0.01 «a=0.001
PSNR 25.20 26.11 26.92 31.07 33.89
SSIM 0.771 0.791 0.803 0.879 0.935

TABLE 2
PSNR/SSIM values with weakly supervision of DWDN [24] with various
values of a.

DWDN a=1 a=01 a=001 «a=0.001
PSNR  25.56 26.65 28.98 31.55 33.41
SSIM 0.730 0.753 0.812 0.881 0.924

their results can still be helpful to improve the latent clean
image of SelfDeblur. 3) Increasing the value of « is the
same as putting more weights on Lyeqk. It allows the
network to generate results that is closer to DWDN [24] or
DMPHN [25], thus results in lower PSNR/SSIM. 4) with
proper a (o = 0.001), the best performance is achieved. We
will set o« = 0.001 for subsequent experiments.

Effect from regularization: We conduct experiments to
show if £,., can be helpful. For simplicity, we use DWDN.
As reported in Table 3, adding L,., hampers the inter-
mediate latent clean image. It mighe due to the conflict
optimization between L4 and Lyeqk-

Early stopping: We set the stopping criteria e as the MSE
between y and §. And test various sliding window sizes as
{5,10, 30, 50}. We report the PSNR/SSIM values when the
stopping criteria is triggered and training is stopped. The
number of training iteration is also recorded. Table 4 shows
the results. As we can see, at different stages of the training
process, the resulting deblurring performance is different.
With w = 30 it quite matches the results of tranining using
full 5,000 iterations. However, one thing to notice is that
the learning rate decay happens at 2000, 3000%", 4000*"
iterations but the early stopping is set after 1500'" iteration
before the first learning rate decay. Thus, setting early stop-
ping after the learning rate decay might be more intuitive.
We set this as one of the future works.

TABLE 3
PSNR/SSIM values with weakly supervision of DWDN [24] with various
values of a.
a=0.001 B =0.001
PSNR 33.41 33.19
SSIM 0.924 0.911
TABLE 4

PSNR/SSIM and number of iterations for different sliding window sizes.

Stopping criteria: MSE

w 5 10 30 50
PSNR 32.63 3324 3329 3278
SSIM 0919 0.935 0936 0.921

# Iterations 1510 1520 1573 1691
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TABLE 5
Comparison with the state-of-the-art methods.

SelfDeblur DMPHN DWDN +DMPHN +DWDN

PSNR 33.07 25.19 25.56 33.89 33.41
SSIM 0.931 0.771 0.729 0.935 0.924
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Fig. 4. Per kernel PSNR for different methods.

5.2 Comparison with the state-of-the-art

Qauntitative comparison: Table 5 shows the comparison
between state-of-the-art methods. Compared to the baseline
(SelfDeblur), the proposed wealy supervision is able to
improve it.

Per kernel/image analysis: Fig. 4 and Fig. 5 report the
average PSNR for every kernel or every image with different
kernels. For most of the cases, adding weak supervision is
able to improve the performance.

Qualitative analysis: Fig. 3 shows the qualitative analysis.
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Fig. 5. Per image PSNR for different methods.

DWDN may results in some artifacts, but it also provides
some clean areas for better supervision. Therefore, DWDN
improves the final results.

6 DISCUSSION AND FUTURE WORKS

From the experimental analysis, it seems that the core con-
tribution of this work is effective. However, there are still
quite a few things need to be investigated, such as further
investigation for more comprehensive analysis on the early
stopping methods. On the other hand, the defective perfor-
mance of adding L,., needs further justification, such as
analyze the gradient before and after adding L.

7 CONCLUSION

In this work, we observed the main limitation of the deep
prior method for blind image deconvolution due to the



indirect supervision during training. We proposed a weak
supervised learning to add relaxed supervision in the inter-
mediate results. Experimental results show that our method
is able to improve the baseline.
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