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Abstract—In this paper, we study the problem of converting sSRGB images back to RAW format. RAW images are the direct outputs
from cameras without going through the image signal processing (ISP) pipeline. Since they contain additional information compared to
processed sRGB images, RAW image is a highly valuable image format that enables several editing and computer vision tasks.
However, due to its large file size, users often only have access to their processed and compressed counterparts. There has been
tremendous efforts in designing methods to reverse the ISP pipeline. In this work, we treat this problem as an image-to-image
translation task, and leverage the powerful diffusion models to solve it. We test our algorithm on two camera datasets. Quantitative and
qualitative results show that our model is competitive with state-of-the-art methods. We also study the generation quality-speed
trade-off by experimenting with different sampling strategies. Our code is available here.

Index Terms—Image Signal Processing (ISP), Diffusion Models

1 INTRODUCTION

OR professional users, RAW images are usually pre-

ferred over RGB images since they contain unprocessed
scene irradiance. Such information is desirable for attaining
more plausible visual effects and various image editing
tasks. Recently, researchers point out that RAW images are
also valuable for computer vision tasks, such as intrinsic
image decomposition [1], image super-resolution [2], [3],
image denoising [4], [5], [6], and reflection removal [7], [8].
However, since RAW images are memory-intensive, saving
a pair of RAW and RGB images is not feasible, as they
are often discarded after the image signal processing (ISP)
pipeline. To enable users to get access to the RAW one,
inverting the sRGB images to RAW images becomes an
important problem in computational photography.

Due to the great advantages of RAW images, there has
been several works studying such reverse ISP mapping [3],
[4], [9], [10], [11], [12], [13], which can be categorized into
two classes. Traditional methods utilize additional infor-
mation such as parameters of the ISP functions [11], or
priors about the camera [4] to compute the reverse process.
Recently, data-driven methods demonstrate their excellent
performance using deep neural networks [3], [12], [13].
They treat the sSRGB-RAW mapping as an image-to-image
translation problem, and apply advanced generative models
such as GANs [14], [15] and Normalizing-Flows [16], [17].

Inverting the ISP pipeline is a challenging problem since
it is a lossy pipeline, converting 12 or 14-bit RAW data to 8-
bit RGB data. ISP steps such as denoising, tone mapping,
and quantization all lead to inevitable information loss.
Especially, the over-exposed regions totally lose the corre-
sponding data, resulting in a harder inversion. Moreover,
there is also a lossy image compression process in the
digital camera to save the RGB in the JPEG format. The cur-
rent state-of-the-art method, Invertible ISP [13], utilizes the
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normalizing-flow-based models [16] with a differentiable
JPEG simulator. However, due to the capacity limitation of
flow-based models (as they need to preserve the invertibility
of network), their performance still has room for improve-
ment, especially for the over-exposed areas.

Recently, diffusion models have demonstrated great suc-
cess in image generation tasks [18], [19], [20], [21]. By
decomposing the image generation process into multiple
rounds of denoising operation, diffusion models are able
to synthesize images of high quality. Later works [22], [23]
also show that these models are good at conditional gen-
eration, thus suitable for image-to-image translation tasks.
This inspires us to apply diffusion models on inverting the
ISP process. With their incredible generative power, in this
work, we seek to develop a fully end-to-end framework to
directly synthesize RAW images from the sRGB ones. In
summary, this project makes the following contributions:

« To the best of our knowledge, our method is the first
attempt in RAW image reconstruction via diffusion
models. Quantitative and qualitative results on two
camera datasets show that we achieve competitive
performance with state-of-the-art approaches;

« Diffusion models are notoriously slow and memory-
consuming in the generation process. We study the
quality-speed trade-off with different sampling algo-
rithms in our experiments, and provide insights in
which algorithm to choose under different scenarios.

2 RELATED WORK
2.1 RAW Image Reconstruction

There has been several works researching reconstructing
RAW images from their sRGB counterparts [3], [4], [9],
[10], [11], [12], [13], which can be mainly categorized into
two classes depending on whether they still follow the
traditional steps in the ISP pipeline.

Methods following ISP pipeline. Nguyen et al. [11] store
the parameters of ISP into a 64KB overhead in the metadata
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(b) Detailed architecture of the U-Net module.

Fig. 1. Overview of our framework. The top figure (a) shows the iterative RAW image reconstruction procedure, where a U-Net performs denoising
conditioned on the RGB image. The bottom figure (b) illustrates the architecture of U-Net with skip-connections, which takes in the concatenation
of a noisy RAW image X; and an RGB image Y, and predicts the noise ¢;, which is then used to obtain X;_;.

of their processed JPEG images, which can be used to map
RGB images back to RAW data. Brooks et al. [4] leverages
neural networks to learn camera-specific priors, and use it
to reverse ISP step by step. These methods are interpretable
as they follow the manually designed ISP pipeline. How-
ever, their performance is bounded by the inevitable error
accumulation issue in each step, thus underperforming end-
to-end learning-based methods.

Methods re-designing ISP pipeline. These approaches re-
place traditional ISP steps with learned neural network
modules. Afifi et al. [9] propose to model the RAW recov-
ery process with camera-independent CIE-XYZ color space.
CyclelSP [3] models the RGB-RAW-RGB pipeline in a cycle
manner, and can perform bi-direction image conversion.
Closet to our work, InvISP [13] proposes to leverage the
invertible neural network [16] to merge RAW-to-RGB and
RGB-to-RAW mapping in a single model. Similarly, we also
replace all the irreversible intermediate ISP steps with a
deep generative model. Unlike previous works, we target
to utilize the generative power of diffusion models [18] to
compensate for the gap between RAW data and RGB data,
especially for the over-exposed part.

2.2 Diffusion Models

Recently, diffusion models have achieved tremendous
progress in generation tasks, including images [18], [19],
[20], videos [24], [25], [26], and 3D shapes [27], [28], showing

their great ability in density estimation and sample quality.
The generative process of diffusion models is formulated
as an iterative denoising procedure [18] with a powerful
U-Net [29]. Later works show that diffusion models are
also good at conditional generation tasks, such as text-to-
image generation [21], [30], image super-resolution [22], and
image inpainting [23]. The later two tasks belong to the
family of image-to-image translation problem, where the
input and target data have the same shape, and RGB to RAW
conversion also belongs to it. While researchers demonstrate
that diffusion models can achieve amazing performance in
several domains, there is no work applying them to the task
of RAW image reconstruction to fully dig into the potential
of their generative power for the lost information.

3 METHOD

In this section, we describe our diffusion model based RGB
to RAW image reconstruction pipeline. Given an image
Y € REXWX3 in the sRGB space, we aim to synthesize
the corresponding demosaiced RAW image X € R7ZxWx3,
which can then be transformed via the Bayer sampling
function to obtain the target RAW data Z € RIXWx1,
Below we first review some basic concepts of diffusion
models (Section 3.1), then detail our conditional generation
framework (Section 3.2). An overview of our framework is
presented in Figure 1.
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Fig. 2. Forward and reverse process of a typical diffusion model. Image
adopted from Figure 2 of [18].

Random Gaussian noise

3.1 Review of Diffusion Models

Diffusion models are probabilistic models that learn a
data distribution ps(Xo) by gradually denoising a stan-
dard Gaussian distribution, in the form of pg(Xo) =
J po(Xo.r) dX1.7. Here, X1.7 are intermediate denoising
results with the same shape as Xy ~ ¢(X), and 6 are
learnable parameters of the deep denoising network, usu-
ally realized as a U-Net [29].

Figure 2 shows the graphical model of a typical diffusion
model [18]. The joint distribution ¢(X1.7|Xo) is called the
forward process or diffusion process, which is a fixed Markov
Chain that gradually adds Gaussian noise to the clean
data X. The noise is controlled by a pre-defined variance
schedule {3} ;:

I
q(X1.7|X0) = H (X X:-1) (1)
A(Xe| Xi1) = N(V1= B X1, B)

=1 =05 X 1+ Bre

2)
where € ~ N(0,1I)

Thanks to the nice property of Gaussian distributions, an
good property of this formulation is that X; can be sampled
directly from X, in closed form without adding the noise ¢
times. Letay =1 — §; and &y = Hizl a,, we have:

q(X¢| Xo) = N(Va: Xo, (1 — a)I)
=VaXo+(1—a)e 3)

We can now train a model to reverse this process and thus
generate target data from random noise X1 ~ N (0, I). The
reverse process pg(Xo.r) is also defined as a Markov Chain
with a learned Gaussian transition:

Do (XO:T)

pe(Xt—1|Xt)

T
= p(X7) [[ po(Xs-1]X0)

t=1 4
:N(/UG(Xt?t)’EG(Xt?t)) @

In practice, we do not learn the variance and usually set it
to ¥; = B:1. Also, instead of learning the mean iy directly,
we learn to predict the noise ¢; in Equation (2). See [18] for
how we can compute X;_; given X, and the predicted €.
The training process of diffusion models is thus simple
given Equation (3). At each step, we sample a batch of
clean data X, from the training set, timestamps ¢ uniformly
from {1,...,7}, and random Gaussian noise ¢; ~ N(0,I).
We then create the noisy version of data X; by applying
Equation (3). A denoising model ¢ is utilized to predict the

3

noise via € = eg(X4,t). The entire network is trained end-
to-end via an MSE loss:

Loy =Ex t.cfller — ea( Xy, t)|[?] (5)

3.2 RAW Reconstruction with Diffusion Models

The diffusion model introduced in the above section can
perform unconditional generation tasks excellently. How-
ever, our task requires generating RAW images conditioned
on their sRGB counterparts. Figure 1 (a) demonstrates the
desired generation process of our framework, where the
denoising network is guided by the RGB image Y to syn-
thesize the RAW data X.

Inspired by previous works [22], [23] that perform sim-
ilar image-to-image translation tasks, we employ channel-
wise concatenation with the RGB image Y to guide the
denoising process towards generating the corresponding
RAW image Xy. As shown in Figure 1 (b), we simply
concatenate Y and X as the input to the denoiser ¢, and
predict the added noise ¢,. The training loss in Equation (5)
is thus modified to:

Lepym =EBix,yyeellle — eo(Xe, Y, 1) (6)

3.3

Here we illustrate some of our design choice and training
details of the model.

Diffusion model. We follow DDPM [18] to use a U-Net [29]
as the denoising network eg. It consists of four residual
block stages in both the encoder and decoder, with skip
connections in-between to facilitate local and global feature
fusion. Each stage is implemented as N,.s = 1 residual
block [31] (i.e. the BasicBlock module used in ResNet-18),
with Group Normalization [32] and Swish [33] activation
function. In addition, all residual stages (except the first
one) are followed by a 2x down- or up-sampling layer, and
a spatial attention layer, which is realized as a scaled dot-
product attention [34] that takes in all entries of the feature
maps. This module performs global interactions of features,
and is proved vital for the expressiveness of diffusion mod-
els [19]. We set the base channel number as N, = 64 in U-
Net, which is multiplied by {1, 2, 3, 4} in the four stages. For
the noise variance schedule {3;}Z_; in the forward process,
we follow LDM [21] to use a linear schedule that linearly
increase from (3; = 0.0015 to B = 0.0195 over T' = 1000
steps. In our own research, we find this schedule generally
performs better in conditional generation tasks than the one
used in the original DDPM paper.

Model training. Diffusion models are memory-consuming
due to the spatial attention module, which scales quadrat-
ically with the training image resolution. Similarly, our
closest baseline InvISP [13] also faces such memory issue,
as they adopt a normalizing flow network [16] whose fea-
ture maps have the same dimensionality as input images
to preserve invertibility. Therefore, they design a patch-
based protocol, where the model is trained on small patches
randomly cropped from the image. At test time, an image is
split into regular patch grids as model inputs, and merged
back for metrics evaluation. In this work, we adopt the same
setting as InvISP and train our model on patches of shape

Implementation Details



Fig. 3. Sample RGB-RAW images from the MIT-Adobe FiveK dataset. Note that the RAW data has undergone demosaicing and gamma correction.

64 x 64. We use the Adam [35] optimizer and train the model
for 20k steps. The learning rate is first linearly warmed-up
to 2 x 107* in the first 1k steps, and decayed to 2 x 10~°
throughout the training in a cosine schedule. We also clip the
maximum Ly norm of gradients to 1 for stabilizing training.
We train our model with a batch size of 256. The codebase
is implemented in PyTorch [36] and trained on 4 NVIDIA
V100 GPUs, each with 32GB memory.

4 EXPERIMENTS

In this section, we evaluate the RAW reconstruction results
of our diffusion model. We first detail the datasets used
in our experiments and baselines we compare with (Sec-
tion 4.1). Then, we present quantitative (Section 4.2) and
qualitative (Section 4.3) results to verify the effectiveness
of our method. Finally, ablation study (Section 4.4) is con-
ducted to investigate several design choices we made and
the quality-speed trade-off in the sample generation process.

4.1 Experimental Setup

Datasets. We use the same RAW-RGB dataset as InvISP [13],
which is a subset from the MIT-Adobe FiveK dataset [37].
Specifically, we collect 590 RAW data from the NIKON
D700 camera and 777 RAW data from the Canon EOS 5D
camera. Following InvISP, we use the 85:15 train-test data
split, and train two diffusion models on the two camera data
separately. The ground-truth sRGB images are rendered
with representative ISP steps in modern digital cameras.
Notably, since demosaicing and gamma correction are re-
versible steps, the ground-truth RAW images are processed
by them in advance. Sample RGB-RAW image pairs of the
dataset can be found in Figure 3.

Evaluation Metrics. We adopt PSNR to measure the recon-
struction quality of RAW images. We also consider common

TABLE 1
Quantitative evaluation between our method and baselines.
Method PSNRT
NIKON D700  Canon EOS 5D

UPI 30.12 26.31
CycleISP 30.19 34.48
InvGrayscale 33.28 38.00
U-Net 41.17 41.14
InvISP 44.19 45.73
Ours 40.10 41.41

image quality metrics such as SSIM [38] and perceptual
distance [39]. However, they are not well-defined in the
RAW data space. So we do not report them.

Baselines. We adopt the baselines from [13] and copy the
numbers from its paper. UPI leverages learned camera pri-
ors to invert the ISP pipeline step-by-step. CycleISP [3] trains
a CNN model to perform the RGB-RAW-RGB bi-directional
conversion jointly. InvGrayscale [40] and U-Net [13] both
apply a U-Net structure to reconstruct RAW data from
sRGB images. InvISP [13] applies an inherently invertible
Normalizing Flow network to learn the ISP process. For fair
comparison, we adopt the InvISP variant without differen-
tiable JPEG simulation.

4.2 Quantitative Results

Table 1 shows quantitative results regarding the PSNR
metrics on the MIT-Adobe FiveK dataset [37]. Our method
achieves competitive performance on both types of cameras.
The Canon EOS 5D part is larger than the NIKON D700
part, and thus, our model is able to outperform U-Net [29]
on the former part. This demonstrates the great potential of
applying the diffusion model on RAW image reconstruction
and indicates that it would be better to train diffusion
models with large-scale datasets.
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4.3 Qualitative Results

Fig. 4 provides quantitative results in resolution 1024 x 1024.
We can synthesize plausible RAW images based on only
RGB images in diverse scenarios. Though our model is
trained on the patch-level, we can apply our method to
arbitrary high-resolution images via running our model on
overlapping patches and merging them via weighted sum.

4.4 Ablation Study
We conduct ablation study on the NIKON D700 subset.

TABLE 2
Ablation study on model design on NIKON D700 subset.

Method PSNR 1

Ours (Full Model) 40.10
Residual block number Nyes = 2 40.00
U-Net base channel Ne = 32 12.84
DDPM variance schedule {3:}7_, 37.61
Patch size 128 x 128 1541

4.4.1 Model Design Choices

Table 2 shows the model performance regarding different
settings. Using two residual blocks in each stage leads
to slightly worse result, which may because doubling the
model size leads to overfitting. In contrast, using half the
number of U-Net base channels significantly degrades the
performance. This proves that our current model architec-
ture is a good fit for the dataset. For the diffusion process,

Ours
Fig. 4. Visualization of our result on NIKON D700 dataset. Our diffusion-based method is capable of synthesizing plausible RAW images.

using DDPM’s variance schedule makes PSNR drop by
3. This coincides with previous research [21] that shows
better conditional generation quality with the schedule we
use. Finally, we experiment on patches of shape 128 x 128.
However, we have to use a much smaller batch size due to
large memory consumption, which results in low PSNR.

TABLE 3
Ablation study on sampling strategy of diffusion models. All speed is
measured on 8 NVIDIA V100 GPUs with a batch size of 512 patches.

Method PSNR 1 | Time per Image (s) |
Ours (DDPM) | 40.10 42176
DDIM 2771 166.12
DPM-Solver 28.49 10.34

4.4.2 Sampling Strategy

Diffusion models are notoriously slow in generation speed
due to its iterative sampling procedure. To generate an im-
age, DDPM needs to perform forward pass 1" = 1000 times.
This is even worse in our task since we work on 64 x 64
patches, and an image will be split into more than 1,000
patches. There is a line of research studying accelerating the
generation process of diffusion models. We examine three
sampling strategies here, namely, naive DDPM, DDIM [41],
and DPM-Solver [42]. For DDIM, we follow the original
implementation and use 200 sampling steps. For DPM-
Solver, we follow the recommended setting to use a 3rd-
order single-step solver with 20 sampling steps.
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Fig. 5. Qualitative comparison between different sampling strategies. Though DDPM consumes much more time than other sampllng strategies, it
achieves the best RAW reconstruction quality. Note the blockly artifacts highlighted in the red windows.

Table 3 shows the generation quality and speed trade-off
with different sampling strategies. Our vanilla DDPM sam-
pling leads to the best performance, but also requires over
7 minutes to generate just one image. DDIM accelerates the
sampling by 2.5x, while degrading the PSNR drastically.
Similarly, DPM-Solver also leads to large PSNR drop, but it
also provides over 40x speedup.

Qualitatively, as shown in Figure 5, the global appear-
ance of the reconstructed RAW images by different methods
are not that distinct as presented in the numerical results.
However, when zooming in into local details, we observe
severe blockly artifacts in images generated by DDIM and
DPM-Solver. This is because the noise is not completely
removed due to their smaller sampling steps, which leads
to color perturbations. Since the visual results are merged
from multiple 64 x 64 patches, such color inconsistency is
exaggerated, causing significant performance drop.

Overall, the selection of sampling strategy depends on
the actual use case. For tasks that require high accuracy re-
construction like RAW image reconstruction, vanilla DDPM
provides the best performance. While for applications such
as content generation in gaming, fast algorithms such as
DPM-Solver can be a good fit.

5 CONCLUSION AND FUTURE WORKS

In this paper, we propose a diffusion model based method
to invert the traditional ISP pipeline in modern digital cam-
eras. It treats the SRGB to RAW image reconstruction task as
a general image to image translation problem, and leverages
the strong generative capability of diffusion models to tackle
it. Extensive experiments on two camera datasets demon-
strate the effectiveness of our method both quantitatively
and qualitatively. We also conduct ablation study to verify
our design choices, and present preliminary investigations
in the effect of different sampling algorithms.

Limitations and Future Works. Our base U-Net model
is directly adopted from previous diffusion model papers
without special designs to accommodate the inverse ISP
task. One can explore injecting priors about the ISP process
to the network design, such as modules for inverting the
denoising step. Another limitation is that we train our
model on patches of shape 64 x 64 due to the huge memory
consumption of diffusion models. This eliminates the global
effects in RAW to RGB conversions, as the model cannot
perform long-range reasoning between patches. We tried to
train a model with larger patch size 128, but failed due to the
quadratically increasing memory requirement. One possible

DPM-Solver

DDPM

solution is to adopt the Latent Diffusion Model (LDM)
framework [21], which first trains a VAE model to convert
images to latent feature maps, and then learns the diffusion
generation process in the latent space. LDM demonstrated
impressive generation quality in both unconditional and
conditional cases. However, LDM often require tens of thou-
sands of training data, while the paired RGB-RAW datasets
are often small (less than 1,000 pairs). One viable solution is
to freeze a pre-trained LDM such as Stable-Diffusion', and
only fine-tune or re-train a new image encoder/decoder.

Overall, we believe the task of inverting ISP pipeline
holds great potential for several photography and computer
vision applications, and that our work is a new step towards
this goal.
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