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Abstract—Video denoising is a more demanding task than still image denoising since it requires not only spatial denoising but also
temporal coherency. On the other hand, video frames contain more information than a single image, which is helpful in the video
denoising process. Thanks to the success of deep convolutional neural networks (CNNs), video denoising has recently achieved
impressive performance using either supervised learning or unsupervised learning-based methods. In this project, we investigated two
state-of-the-art algorithms, i.e., FastDVDnet and UDVD, and applied them to our real facial videos. The performance of the two
algorithms was evaluated by PSNR and SSIM. Besides, the denoised videos are further used to extract image photoplethysmography
(iPPG), a new noninvasive method to reveal the change of blood flow. We hypothesize that the iPPG extracted from the denoised facial
video reflects the change of blood flow better than the iPPG extracted from the noisy facial video. This process can either work as the
further application of facial video denoising or a metric to evaluate the results of facial video denoising when ground truth video is not

available.

Index Terms—Deep video denoising, imaging photoplethysmography, explicit motion compensation.

1 INTRODUCTION

ENEFITED from the success of image denoising, video

denoising has become an active research field in past
years. Especially many deep CNN-based video denoising
algorithms [1], [2], [3], [4] have achieved outstanding re-
sults and outperforming patch-based methods such as [1],
[3], [4], [5], [6], [7], [8], [9]. Contrary to image denoising,
video denoising is more demanding, requiring reasonable
temporal coherency. But on the other hand, a video contains
much more information than an image, which could help
in the denoising process [3]. Generally, video denoising
can be categorized as spatial video denoising, temporal
video denoising, and spatial-temporal video denoising [10].
In spatial video denoising methods, denoising is applied
to each frame individually; in temporal video denoising
methods, denoising is applied to successive frame pairs; and
spatial-temporal video denoising methods (i.e., 3D denois-
ing) use a combination of spatial and temporal denoising.

FastDVDnet is one of these advanced spatial-temporal
video denoising methods, introduced in [3]. FastDVDnet ex-
hibits several desirable properties, including a small mem-
ory footprint and the ability to handle a wide range of noise
levels with a single network model. With these attractive
properties, in this project, FastDVDnet was explored and
evaluated on our facial video data. However, similar to
other start-of-the-art video denoising methods, FastDVDnet
is based on supervised learning. [4] introduced an unsu-
pervised video denoising method, called UDVD, achieving
quite a similar performance as FastDVDnet. Therefore, we
also included UDVD as one main architecture for our exper-
iments and compared it to FastDVDnet using our in-house
facial video data.
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Based on [11], facial video could be used to simulate
finger PPG (finger photoplethysmography), which is called
an imaging PPG (iPPG). Therefore, in this project, as an
extended application of the denoised facial video, the iPPG
is extracted from the denoised facial videos and compared
to finger PPG. This can also work as an evaluation metric of
video denoising when PSNR and SSIM can not be calculated
due to the unavailability of ground truth videos.

2 RELATED WORK

2.1 FastDVDnet

Introduced in [3], FastDVDnet improves DVDnet [2] by
replacing single-scale denoising blocks with multi-scale de-
noising blocks. Figure 1 shows the architecture of Fast-
DVDret. Its denoising process includes two steps. In the
first denoising step, three denoising blocks share the same
weights and take three consecutive frames as inputs. All
denoising blocks in two steps have the same architecture (a
modified U-Net), which is shown in Figure 2.

Instead of explicitly including motion estimation and/or
compensation stage, FastDVDnet implicitly handles the mo-
tion by multi-scale modified U-Net [12] blocks which have
been shown to be able to learn misalignment [13], [14].
Based on [3], FastDVDnet is trained end-to-end without op-
tical flow alignment, which avoids distortions and artifacts
due to erroneous flow.

Similar to [2], [15], a noise map is also included as a
separate input in FastDVDnet to allow for the processing of
spatially varying noise. The noise map provides information
to the network about the distribution of the noise at the
input, which is encoded as the expected per-pixel standard
deviation of this noise.
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Fig. 1. Architecture of FastDVDnet. (We drew this figure based on [3].)
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Fig. 2. The denoising blocks of FastDVDnet are composed of a modified
multi-scale U-Net. (We drew this figure based on [3].)
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The training dataset of FastDVDnet consists of noisy
input and clean output pairs,
where m; is the number of training samples. s =
(P 5, P}, P!, P}, P],,) is five spatial patches cropped
at the same location in successive frames, and P’ is the
clean central patch of the sequence. M7 denotes the noise
map with all its elements equal to the standard deviation of
the noise, 0. The loss function of FastDVDnet is defined as
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where P/ = F((S/, M7);0) is the output of the network,
and 0 is the set of all learnable parameters.

2.2 UDVD

Inspired by the “blind-spot” technique for unsupervised still
image denoising, in which a CNN is trained to estimate
each noisy pixel from the surrounding spatial neighborhood
without taking into account the pixel itself, [4] introduced
unsupervised video denoising (UDVD) method. The archi-
tecture of UDVD is shown in Figure 3. Input frames in
UDVD are rotated by four different angles: 0°, 90°, 180°
and 270° and the rotated frames are then processed in four
separate branches with shared parameters, each containing
asymmetric convolutional filters that are vertically causal.
As a result, the branches produce outputs that only depend
on the pixel above (0° rotation), to the left (90° rotation),
below (180° rotation), and to the right (270° rotation).
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To produce the final output frame, the outputs from four
different branches are then derotated and linearly combined
through a 1 x 1 convolutions followed by a ReLU nonlin-
earity. Each branch of UDVD includes two denoising stages.
The first stage in each branch consists of three U-Net blocks
with shared parameters, and the second stage from each
branch uses another U-Net.

Similar to other deep CNN-based video denoising meth-
ods, such as [1], [3], [16], UDVD performs motion compensa-
tion without explicitly estimating optical flow. Instead, the
optical flow is automatically estimated from the network
gradients, even though the network architectures are not
designed to account for this.

Given the noisy neighbourhood €2, the distribution of
the three color channels of a pixel z € R3 is modeled
as p(z|Qy) = N(uz,X;), where p, € R3 and &, € R3
denote the mean vector and covariance matrix respectively.
Let the observed noisy pixel be defined as y = x + 7,
n ~ N(0,02I3). Based on [4], by computing the mean of
the posterior p(z|y, €2,), the information in the noisy pixel
is fused with the output of UDVD, given by Elz|y] =
(2 4+ 0721)"Y(2, iy + 07 2y). The mean and covariance
of this distribution at each pixel are estimated by maximiz-
ing the log likelihood of the noisy data:
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When the noise process is unknown, the objective becomes
minimizing the MSE between the denoised output and
noisy video, ignoring the center pixel.
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In the past decade, many studies have been done in the field
of blood pressure (BP) estimation using Photoplethysmog-
raphy (PPG) signal recorded by attaching a device (such
as a light transmitter and a light receiver) to the body
of a participant [17]. However, since this method resorts
to professional measurement devices, it is considered not
convenient and difficult to record PPG signals in long-term
monitoring and estimate BP values from them. Recently,
a new non-contact and camera-based method has been
introduced to record the PPG signals [17], [18]. The PPG
signals are extracted from images of a camera, which is
called the iPPG signal. More specifically, the iPPG signal is
extracted from facial video frames and based on changes
in facial skin color. Hence, it could reveal blood volume
changes. According to [19], the forehead is a good area for
extracting the iPPG signal. The authors of [17] introduced
an iPPG signal extraction algorithm which is illustrated
in Figure 4. The average intensity of the extracted three
(R, G, B) color channel pixels from each video frame is
first calculated, and then a detrended algorithm is used to
remove the low frequencies from these averaged intensity
signals. After that, Independent Component Analysis (ICA)
is applied to three signals to extract the three independent
components. Finally, the Fast Fourier Transform (FFT) of the
components whose first harmonic frequency is in the range
of 0.5 to 5 is considered as the iPPG signal [20].

Imaging Photoplethysmography
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Fig. 3. Unsupervised Deep Video Denoising (UDVD) Network Architecture. (We drew this figure based on the idea in [4].)
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Fig. 4. Steps of extracting the iPPG signal. Source: [17].

3 PROPOSED METHOD our facial videos, so that the denoised facial video could be

used to extract a non-contact iPPG signal that better matches
In this project, we propose to apply two state-of-the-art the contact finger PPG signal. We use three facial videos
video denoising algorithms, i.e., supervised learning-based ~recorded from three individuals by using an iPhone 6s,
FastDVDnet and unsupervised learning-based UDVD, to and contact finger PPGs corresponding to each participant



were simultaneously collected by using a finger PPG record
system (Biopac MP160 monitoring system).

To save computational time, we use the pre-trained
FastDVDnet and UDVD to denoise the facial videos. Both
algorithms were pre-trained on the DAVIS [21] dataset. It is
supposed that a noisy video is only corrupted with Gaussian
noise, while according to [3] and [4], both FastDVDnet and
UDVD can be used to denoise videos with other kinds of
noise (e.g. Poissonian). UDVD was pre-trained on noisy
images with standard deviation 0 = 30. However, since
we assume that the noisy level of facial video is not high,
we fine-tune the pre-trained UDVD on the same DAVIS
training data but with a smaller noise standard deviation
o = 15. By contrast, FastDVDnet allows a wide range of
noise levels (o € [5, 50]), thus we directly use the pre-trained
FastDVDnet without the fine-tuning process. We evaluated
the performance of FastDVDnet with that of UDVD using
two standard metrics: Peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM), and by compar-
ing the extracted iPPGs from the noisy facial videos and the
denoised facial videos.

To extract iPPG, OpenCV is used to detect faces from
each frame, and a mediapipe module is used to locate the
region of interest. A mask is applied to each facial frame to
cover the eyes and mouth. For simplicity, the spatial average
of all pixel values in the green color channel will serve as the
iPPG. Following [6], we used Gaussian process regression
(GPR) to further clean the iPPG signal. One output of
GPR, ie., predicted mean values, is then applied to a 6-
th order Butterworth bandpass filter with cutoff frequencies
0.4 Hz and 3 Hz to produce the final iPPG signal. There
are 60 frames per second, which means the facial video will
produce a 60HZ iPPG signal. Figure 5 shows the process of
iPPG extraction in our experiments.

4 EXPERIMENTAL RESULTS
4.1 Results Analysis of Video Frame Denoising

Figures 6, 7, 8 and Table 1 show the denoising results of
one frame from each noisy facial video. As aforementioned,
we assume the videos are corrupted with Gaussian noise
with standard deviation ¢ = 15. Based on these results,
one can see that FastDVDnet and UDVD methods achieve
quite similar results with FastDVDnet having slightly higher
PSNRs on three noisy videos. However, considering FastD-
VDnet is a supervised learning method while UDVD is an
unsupervised learning method, UDVD might be preferable
when the ground truth video is not available. On the other
hand, as reported in [3], FastDVDnet is robust to varying
noise and a wider range of noise levels (i.e., o € [5,50]),
whereas UDVD is trained on specific noise levels. Therefore,
in some cases, FastDVDnet might be more efficient and
convenient.

4.2 Results Analysis of iPPG Extraction

As mentioned in Section 3, to evaluate the extracted iPPG
from facial videos, we compared it to contact finger PPG.
Finger PPG is considered one typical means to measure
the change in blood flow but is invasive and inconvenient
[17]. We hypothesize that the iPPG extracted from the clean

TABLE 1
Comparison results on one frame of three individual noisy videos.

FastDVDnet UDVD
PSNR | SSIM | PSNR | SSIM
Video one 41.248 | 0.968 | 40.956 | 0.968
Video two 41.164 | 0971 | 40918 | 0.970
Video three || 41.654 | 0.969 | 41.436 | 0.969

facial video should be closer to the finger iPPG. Figures
9, 10, 11 show iPPGs extracted from noisy, denoised, and
ground truth facial videos of participant one, which are
compared to the finger PPG. In this experiment, the noisy
videos were first denoised by using the UDVD algorithm.
All iPPGs in these figures were extracted from the green
channel of the denoised video frames. By comparing Figure
9 with Figure 10, it seems that the iPPG extracted from the
denoised facial video of participant one matches the finger
PPG better than the iPPG extracted from the noisy facial
video. Unfortunately, from Figure 11, one can be seen that
even the iPPG extracted from the ground truth video cannot
perfectly match the figure PPG. There are several possible
reasons resulting in the discrepancy between them. First, it
is possible that finger PPG doesn’t exactly reveal the change
of blood flow as there might be measurement noise. Second,
the iPPG is based on average color intensity, however, some
regions of the face (e.g., forehead) might reveal blood flow
better than other regions, and averaging all pixel values of
the facial image might reduce its performance.

Figures 12, 13, 14 show the comparison of iPPGs ex-
tracted from red channels of the video frames and the finger
PPG of participant one. However, by comparing them with
iPPG extracted from the green channel of video frames, red
channel-based iPPGs have more discrepancies with finger
PPG than green channel-based iPPGs. A similar conclusion
can be made for blue channel-based iPPGs (see Figures 15,
16, 17). The reason for this phenomenon needs to be further
investigated. One possible reason might be hemoglobin in
the blood flow is more sensitive to green light than red or
blue light.

Figures 18, 19, 20 and Figures 21, 22, 23 show the iPPGs
extracted from green channels of other two participants.
From these figures, we can see the iPPGs extracted from the
facial videos including the ground truth video have bigger
discrepancies with finger PPGs than that of participant one.
The reasons need to be inspected in the future.

5 DiIsScUSSION

In this project, we proposed to apply two deep CNN-based
video denoising methods: FastDVDnet (supervised learn-
ing) and UDVD (unsupervised learning) to three noisy facial
videos corrupted by Gaussian noise with standard deviation
o = 15. To compare the denoising performance of two
algorithms, we used two typical metrics PSNR and SSIM.
After the noisy facial video is denoised, we then used the
denoised facial video to extract an iPPG signal. According
to [17], the extracted iPPG signal should match invasive
finger PPG. This process could be considered as the further
application of facial video denoising, but also an evaluation
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Fig. 5. Steps of extracting the iPPG signal from facial video images. Source: [17]

metric when PSNR and SSIM cannot be calculated due to
the unavailability of the ground truth video.

Based on experimental results in Section 4, both FastD-
VDnet and UDVD achieved impressive results with PSNR
values around 40 and SSIM above 0.96. As a supervised
method, FastDVDnet performed a little bit better than
UDVD on our three facial videos, whereas in some practical
situations where ground truth is unavailable, the unsu-
pervised method UDVD might be more preferable. Fur-
thermore, as FastDVDnet is more robust to varying noise
levels, it is allowed to directly use the pre-trained model for
different video denoising tasks, while UDVD is trained on
the specific noise level. When dealing with noisy video with
different noise levels we might need to retrain or fine-tune
the model.

From the aforementioned iPPG extraction results, we can
observe that the denoised facial video produced a better
iPPG signal than the noisy facial video. However, the iPPGs,
including the iPPG extracted from the ground truth facial
video, could not exactly match finger PPG. There are several
possible reasons. First, finger PPG could not perfectly reveal
the change in blood flow due to measurement noise. Second,
for simplicity, we extracted iPPGs based on the average
color intensity of the whole facial image, however, this
method might not be as accurate as using the color intensity
of specific regions of the face (e.g., forehead) which might
mirror the change of blood flow better. Third, different
camera exposure might result in lower performance. We
might need to apply white balancing and color calibration
approaches to the video frames, such that the color intensity
of frames could be more accurate.

6 CONCLUSION

Two state-of-the-art video denoising methods, i.e., FastD-
VDnet and UDVD, were explored and evaluated on our in-

house real facial videos in this project. Both methods are
deep CNN-based (more specifically U-Net based), there-
fore they can automatically estimate optical flow without
explicitly including a motion compensation module. Ac-
cording to [4], accurate optical-flow estimation is possibly
realized from the network gradient. Our experimental re-
sults show that both FastDVDnet and UDVD have their
own advantages. FastDVDnet achieved slightly better re-
sults than UDVD and is robust to varying noise levels
but is a supervised learning method, while UDVD is a
unsupervised learning method and is preferable when the
ground truth video is not available. In addition to using
PSNR and SSIM to evaluate the performance of two video
denoising methods, we also used the denoised videos to
extract iPPGs, which were then compared to finger PPG. We
hypothesized that the iPPG extracted from the clean facial
video matched the finger PPG better than the iPPG extracted
from the noisy facial video. This hypothesis is supported by
our experimental results. The IPPG extraction process can
be viewed as a further application of facial video denoising
or can be used as an evaluation metric when a ground truth
video is unavailable.
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Fig. 6. Comparison of results of participant one.
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Fig. 7. Comparison of results of participant two.
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Fig. 8. Comparison of results of participant three.
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Fig. 9. Comparison of iPPG extracted from noisy facial video (green channel) of participant one and finger PPG.
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Fig. 10. Comparison of iPPG extracted from denoised facial video (green channel) of participant one and finger PPG.
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Fig. 11. Comparison of iPPG extracted from ground truth facial video (green channel) of participant one and finger PPG.
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Fig. 12. Comparison of iPPG extracted from noisy facial video (red channel) of participant one and finger PPG.
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Fig. 13. Comparison of iPPG extracted from denoised facial video (red channel) of participant one and finger PPG.
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Fig. 14. Comparison of iPPG extracted from ground truth facial video (red channel) of participant one and finger PPG.



2.0

—— Finger PPG
15 —— Image PPG (noisy)

| | |
"\J\M ”4 H\‘ 4’ ‘\,‘\ l,»\

o
w o

AU
o
=]

Time [s]

Fig. 15. Comparison of iPPG extracted from noisy facial video (blue channel) of participant one and finger PPG.
r

2.0
—— Finger PPG
15 —— Image PPG (noisy2clean)

1.0

0.5

AU
o
=]

Time [s]

Fig. 16. Comparison of iPPG extracted from denoised facial video (blue channel) of participant one and finger PPG.
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Fig. 17. Comparison of iPPG extracted from ground truth facial video (blue channel) of participant one and finger PPG.
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Fig. 19. Comparison of iPPG extracted from denoised facial video (green channel) of participant two and finger PPG.
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Fig. 20. Comparison of iPPG extracted from ground truth facial video (green channel) of participant two and finger PPG.
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Fig. 21. Comparison of iPPG extracted from noisy facial video (green channel) of participant three and finger PPG.
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Fig. 22. Comparison of iPPG extracted from denoised facial video (green channel) participant three and finger PPG.

2.0

—— Finger PPG
—— Image PPG (ground truth)

I ,J'M g AN

15

1.0

AU
o
=]

Time [s]

Fig. 23. Comparison of iPPG extracted from ground truth facial video (green channel) participant three and finger PPG.
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