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Abstract—Histopathology images are digital scans of tissue slides scanned at multiple and very high magnifications. However, the
digital scanners used to scan these slides are very susceptible to irregularities such as small bumps, specks of dust, or foreign
particles, leading to out-of-focus. Deconvolution may potentially correct the out-of-focus regions. In this work, we study the effects of
different priors in the context of non-blind deconvolution using Adam Optimizer. We also propose three new regularizers, perform
extensive quantitative and qualitative analyses and discuss the observations.

Index Terms—Computational Imaging, Histopathology, Non-Blind Deconvolution

1 INTRODUCTION

HE digitization of histopathology slides has ushered in
Tthe rise of computer aided analyses and interpretation
of histopathology images. These algorithms potentially help
pathologists in many of their day-to-day work by perform-
ing tasks such as cell detection [1], [2], registration [3], sur-
vival analysis [4], [5] etc. However, these algorithms require
high-quality digital images. The digital images from a tissue
slide are often formed by powerful digital scanners which
are able to capture microscopic entities with a high resolu-
tion of 0.2.57%. The images are captured in a pyradimical
format as shown in figure 1, at different resolutions, to aid
pathologists who often look at the tissue slides at multiple
resolutions for diagnosis. Due to such high magnification
power, these scanners are very susceptible. Irregularities in
the tissue resection such as small bumps, small specs of
dust, or foreign object, can cause scanners to go out of focus
leading to blurred scan, which has to again be rescanned.
This can be very costly due to the time it takes to prepare
slides and scan.

Image deconvolution is an actively studied field in
computer vision. The field assumes the following image
formation model

g:a*f+n @)

Where b is the procured image that is blurred. The true
in-focus image Z undergoes convolution using some blur
kernel @ and is corrupted with some noise 7. There are
two types of deconvolution problems, blind and non-blind.
Typically, in a non-blind image deconvolution problem, the
blur kernel is known apriori, hence one can potentially
solve the inverse problem using the image formation model.
However, the solution is not trivial, as it is an ill-posed
problem with many existing solutions. To converge to a
solution, lot of different types of priors has been proposed
for natural images, however it is not immediately clear if the
same assumptions upholds for other kinds of images such
as histopathology images. For this study, we are interested
in knowing the effects of popular priors or regularizers
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Fig. 2: Different resolutions in histopathology images

in the deconvolution of histopathology images. We restrict
ourselves to only non-blind deconvolution with a known
blur kernel. We solve equation 1 using Adam optimization
[6], and in the end, propose three novel priors and explore
their effects.

2 RELATED WORK

There have been a lot of different types of priors or regular-
izers proposed for the inverse problem. Total Variation [7],
a popular regularizer, works based on the assumption that
gradients of images are sparse. Although it works well for
natural images, it produces staircase effect [8], especially for
medical images. There have also been works that have used
laplacian norm [9] and L1 norm [9], which has been shown
to work well in astronomy. Recently, Hessian Schatten Norm
[10] was used as a prior in [11], which was shown to work
very well in deconvolution in fluorescence imaging. For
digital pathology, blind deconvolution using deep learning
[12] was performed, however no regularizers were used



Regularizers U (x)
2 jeallDix;lh
2 ica lIDix;ll2

Anisotropic Total Variation
Isotropic Total Variation

L1 > ieallx;llh
L2 VEiea®?
Laplacian > ica((HaaX); + (Hyyx);)?
Hessian Schatten norm >iealHxllF
Maximize cells (proposed) —(Number of cells)

Cross Entropy (proposed)
KL Divergence (proposed)

—log(T (x € P|x))
—(T(xePlx) —T(b € Qb))

TABLE 1: Table of different regularizers used in the report.
Here D denotes first-order differentiation and #, the Hes-
sian of the image. P and Q refer to the in-focus and out
of focus distribution. €2 is the set of all pixels in an image.
F' is the Frobenius norm, and T is a neural network that
does binary classification between in-focus and out-of-focus
distribution

in the work. To the best of my knowledge, there is no
documentation of the performance of different priors in
histopathology images.

3 PROPOSED METHOD

In this work, we implement 6 popular priors and 3 novel
priors, as shown in table 1. We blurred in-focus images with
different kernels and noise for the experiments using image
formation equation 1. We solved non-blind deconvolution
using the following loss function

1
mgn§||Ax—b||22 + AT (x) )

We solve the loss function 2 using Adam optimizer and use
different priors mentioned in 1, with different importance
factor \. In the next section, we discuss the three proposed
priors

3.1 Maximize Cells

Histopathology images usually have a lot of cells. We often
need a high level of separation between each cell. Hence,
we hypothesize maximizing the number of cells would
enforce the deconvolution to dissect individual cells from
their surrounding cells, which otherwise would have been
a single clump due to the blur. This should also encourage
sharp edges for each individual cell.

These cells, although having a variety of shapes, can
be roughly approximated as round entities. It is further as-
sumed that their diameter is 8um [13]. We wish to calculate
the number of cells approximately given x and maximize
it over the iterations. We estimate the number of cells over
three steps as shown in figure 3. Given x, we first construct
an edge map using Canny edge detector [14]. This is done
to reduce noise and focus on sharpening the edges of the
cells. Once we obtain the edge map, we convolve the edge
map with three handcrafted filters as shown in figure 3.
The filters are designed to give high activations when the
center of the filter is around the center of the cells in the
edge map. Since we use histopathology images at a reso-
lution of 0.5-£7, we use filters with circular and elliptical

pixel’
shapes with a diameter of 8um. Along with positive values
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outlining the boundaries, we put negative values around
the center to give low or 0 activations when not around
the center. We perform convolutions using circular and two
elliptical filters to account for different orientations and
shapes. Finally, we normalize the activations and threshold
values at around 70% quantile. We sum up the resultant
output and take an average over the three filters to estimate
the number of cells. Finally in equation 2, we use the
following regularizer

U(x) = —(Number of cells) ©)]

3.2 Cross Entropy

Let there be two distributions P and Q, such that all in-
focus images or x belongs to in-focus distribution P, and
all blurry/out-of-focus images or b belong to out-of-focus
distribution Q. Using the two sets of images, we trained a
Resnet18 [15] for binary classification to predict in-focus ver-
sus out-of-focus. The model outputs the class probabilities
given an image in the inference stage. Hence, we can use the
class probabilities from the trained network to evaluate the
quality of the deconvolved image x each iteration. Defining
the regularizer as

U(x) = —log(T(x € P[x)) &)

Where T is our trained network. ¥(x) will be 0 for perfectly
restored image X and oo for badly restored image. Hence
the regularizer should ideally push x as close to the in-focus
distribution P as possible.

3.3 KL Divergence

We also use KL divergence as a regularizer and wish to
maximize the KL divergence between the restored images X,
which should ideally belong to in-focus distribution P and
the blurred images b which belong to out-focus distribution
Q. Defining the regularizer as

U(x) = —Dgr(x||b) )

To calculate KL divergence, we use the Donsker Varadhan
Representation [16]. We have

Di1(P||Q) = supr.orEs[T] — log(Egle”])  (6)

Where 7' is a neural network, which takes input samples
from PP in the left term and input samples from Q in the
right term. In our case, we have only a single sample. We
can also reuse the trained network from the cross-entropy
regularizer. Using this, we can simplify the expression to
this

Di1(PllQ) > T(x € Plx) ~T(b Qb)) ()
U(x) = —(T(x €Plx) ~T(b Qb)) (8

Notice we have > because we did not optimize 7" on the
loss equation 6. However, we can still use this estimate as
a regularizer. The KL divergence should be —1 if x is not
restored correctly and 1 if x is adequately restored.



Fig. 3: Maximize cell regularize. We generate an edge map and convolved it with three handcrafted filters. For the filters,
yellow indicates 1, green indicates 0, and purple indicates —1. The right-most figure indicates the activation map overlayed

on top of the original image

4 EXPERIMENTAL RESULTS
4.1 Experimental Details

For the experiments, over 24000 patches of size 256 x 256
were extracted from a single histopathology image at a
resolution of 0.5-57%. The histology image is taken from
the publically available TIGER dataset [17]. The patches
were extracted at a regular stride to sample all the different
types of tissues and explore the effects of deconvolution. The
patches were divided into training and test set. The network
T was trained using the training set, and the evaluations
were performed on 150 samples from the test set.

We also varied different hyperparameters for the exper-
iments to observe their effects on the regularizers. We tried
a combination of 3 blur kernels with varying filter sizes and
standard deviations. We also tried 2 different sets of A and
noise 7.

For Cross-entropy and KL divergence regularizers, we
trained the network 7' on the training samples. For gen-
erating the dataset for training, the in-focus samples were
corrupted synthetically using the image formation model
1. Three datasets were generated for each blur kernel to
train three different networks 7. The datasets were also
corrupted with noise with varying standard deviations to
avoid overfitting to a particular noise level. Overall the
models were trained to achieve 98% accuracy in the test
set.

4.2 Results

The qualitative results are shown in figure 4 and figure 5,
and the quantitative results are shown in table 2, table 3,
table 4 and table 5. We observe lot of interesting properties
in the experiments.

Observation 1: Implicit bias of gradient descent

The implicit bias of gradient descent has been well studied
[18], where it has been shown that gradient descent and
stochastic gradient descent converge to minimum L, norm
solution. The work [19] further proves that Adam optimizer
has a similar implicit bias. We can also observe this phe-
nomenon from our results in table 2 and table 3, where the
results are the same for both L, and no prior.

Observation 2: There is no significant effect of Maximize
cells, Cross Entropy, and KL divergence prior

We observe no significant effect of the proposed priors com-
pared to using no prior as seen quantitatively. This may be

happening due to the design of the regularizer. We observe
that although the proposed regularizers give high values for
blurry images and low values for perfectly reconstructed
images, they do not significantly affect the gradient descent
trajectory. That is, the trajectory of the gradient descent
taken in the no prior case would simultaneously minimize
the values of the proposed regularizers. Hence this, in effect,
does not change the gradient trajectory. This causes the
regularizers to converge to the same solution as no prior.

Observation 3: Qualitatively, No prior, Maximize cells, L1,
Cross entropy, and KL divergence, does not denoise the
image well, leading to low values of image metrics

We observe that No prior, Maximize cells, L1, Cross entropy,
and KL divergence do not denoise the image well. Although
qualitatively as shown in figure 4 and figure 5, the image
may seem to be of good quality with refined edges; however,
it is grainy. This graininess leads to low values in image
metrics such as PSNR and SSIM, compared to regularizers
such as TV priors and Hessian Schatten (due to sparse first-
order gradients), which give blurry images but high PSNR
and SSIM values.

Observation 4: The regularizers give different results for
different areas in a histopathology image

We confirm this qualitatively using figure 4 and figure 5.
Figure 4 is taken from an area with high cell density where
the lymphocytes surround the tumor cells. Figure 5 is taken
from an area with fat tissues. We observe qualitatively for
figure 4, TV prior and Hessian Schatten perform worse than
other regularizers such as Laplacian, proposed priors, and
even no prior. However, figure 5 shows the opposite effect
where TV priors and Hessian Schatten perform better. This
may be happening because TV priors and Hessian Schatten
are based on the assumption that the first-order gradients
should be sparse. This may be generally true for natural
images but fails for histopathology in cases such as figure 4,
where the density of cells is high, leading to non-sparse first-
order gradients. Since the assumptions uphold for figure 5,
the regularizers perform better.

Observation 5: No prior, three proposed priors, laplacian are
better than TV and Hessian Schatten at low noise levels

The observation is very similar to observation 3. No prior,
three proposed priors and laplacian regularizers lead to
sharp but grainy deconvolutions compared to TV and Hes-
sian Schatten. As the noise level increases, the graininess



decreases; hence the former regularizers overtake the latter
regularizers quantitatively, as shown by PSNR and SSIM
image metrics.

Observation 6: Different blur kernel and \ has varied effects
on different regularizers

We observe different effects of blur kernel and A for different
regularizers. For example, we see a drop in TV priors
and Hessian Schatten with increasing blur kernel size and
standard deviation, as compared to other regularizers such
as Laplacian.

5 CONCLUSION

In this work, we investigate 6 popular priors and also
proposed three new priors. We investigated their properties
quantitatively and qualitatively and stated many interesting
observations. For future work, it would be interesting to try
multiple regularizers to account for individual weaknesses.
From this study, we also realized the importance of taking
the implicit bias of the gradient descent into account while
designing new priors so as to converge to different and
better local minima.
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Fig. 4: Results for different regularizers on an image with high cell density. The image is blurred with a blur kernel of filter
size (10, 10) and standard deviation o = 1.5. The noise standard deviation is 0.05
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Fig. 5: Results for different regularizers on an image with fat tissue. The image is blurred with a blur kernel of filter size
(10, 10) and standard deviation o = 1.5. The noise standard deviation is 0.05



Noise | Lamda Blur Kernel No Prior Anisotropic TV | Isotropic TV | Hessian Schatten L1
(10,10,0 =1.5) | 19.49+1.08 26.60 £ 2.00 26.16 £ 1.75 26.34 £ 1.66 19.01 £0.94
0.05 (30,30,0 = 4.5) | 24.55 £2.47 25.45 £3.38 25.51 £3.33 24.87 +2.68 24.04 £2.20
0.15 (60,60,0 = 6.5) 24.16 £ 3.16 24.24 £+ 3.54 24.29 £ 3.52 24.18 £ 3.22 23.71 £ 2.83
’ (10,10,0 =1.5) | 19.49£1.08 26.06 £ 3.39 25.88 £3.16 27.08 £2.75 11.05 £0.20
0.5 (30,30,0 =4.5) | 24.55 £247 23.94 £ 3.61 23.77 £ 3.50 24.67 £ 3.30 11.81 £0.28
(60,60,0 =6.5) | 24.16 £3.16 23.21 £3.56 23.02 £ 3.50 23.47 £3.37 11.79£0.35
(10,10,0 = 1.5) | 27.54 +1.47 30.40 £ 3.46 30.76 £ 3.47 30.55 £ 3.51 26.55 £ 1.20
0.05 (30,30,0 =4.5) | 26.67£3.59 25.95 £ 3.67 26.10 £ 3.67 26.44 £ 3.64 25.86 £2.93
0.05 (60,60,0 =6.5) | 25.03 £3.74 24.48 £ 3.69 24.55 £ 3.68 24.91+3.73 24.46 = 3.22
’ (10,10,0 = 1.5) 27.54 £ 1.47 26.21 £ 3.51 26.02 £ 3.26 28.41 £ 3.62 12.00 £0.15
0.5 (30,30,0 = 4.5) | 26.67£3.59 24.01 £3.67 23.83 £3.54 25.01 £3.55 11.93£0.27
(60,60,0 =6.5) | 25.03£3.74 23.25 £ 3.59 23.07 £3.53 23.54 £3.40 11.84£0.34

TABLE 2: PSNR values for various regularizers for different blur and noise parameters. The results are of form mean=+std.
The statistics are calculated for 150 random samples from the histology image

Noise | Lamda Blur Kernel L2 Laplacian Maximize Cells | Cross Entropy | KL Divergence
(10,10,0 = 1.5) | 19.49 +1.08 20.90 +0.71 19.49 £1.08 19.48 £1.08 19.49 £1.08
0.05 (30,30,0 = 4.5) 24.55 £ 2.47 24.56 + 2.47 24.55 £ 2.47 24.54 + 2.46 24.55 + 2.46
015 (60,60,0 = 6.5) 24.16 £ 3.16 24.16 + 3.16 24.16 £ 3.16 24.15 + 3.16 24.16 + 3.16
’ (10,10,0 = 1.5) 19.51 £ 1.06 2492 +1.04 19.49 £ 1.08 19.44 £ 1.08 19.46 £ 1.08
0.5 (30,30,0 = 4.5) 24.57 £ 2.47 24.62 + 2.50 24.55 + 2.47 24.46 + 2.41 24.52 + 2.45
(60,60,0 =6.5) | 24.17 £3.17 24.16 £+ 3.17 24.16 £ 3.16 24.12 + 3.16 24.13 £ 3.15
(10,10,0 = 1.5) | 27.544+1.47 28.53 &+ 1.53 27.54 +1.47 27.50 +1.46 27.53 +1.47

0.05 (30,30,0 =4.5) | 26.68+3.59 | 26.67 £3.59 26.67 £ 3.59 26.67 £ 3.57 26.68 + 3.59

0.05 (60,60,0 =6.5) | 25.03£3.74 | 25.03£3.74 | 25.03+3.74 25.00 £3.71 25.03 +3.73
’ (10,10,0 = 1.5) 27.58 £ 1.47 30.25 £ 2.89 27.54 £1.47 27.20 £ 1.42 27.31+1.43
0.5 (30,30,0 =4.5) | 26.69 £3.60 | 26.63 £ 3.61 26.67 + 3.59 26.55 & 3.46 26.63 & 3.52
(60,60,0 =6.5) | 25.04+3.74 | 25.02+£3.74 25.03 £3.74 24.68 £ 3.38 24.87 £ 3.57

TABLE 3: PSNR values for various regularizers for different blur and noise parameters. The results are of form mean=+std.

The statistics are calculated for 150 random samples from the histology image

Noise | Lamda Blur Kernel No Prior Anisotropic TV | Isotropic TV | Hessian Schatten L1
(10,10,0 = 1.5) | 0.25+£0.08 0.61 +0.04 0.59 £0.05 0.59 £ 0.06 0.24 £ 0.08
0.05 (30,30,0 =4.5) | 0.52+£0.08 0.57 £0.16 0.57 £0.15 0.54 £0.10 0.53 £0.08
0.15 (60,60,0 =6.5) | 0.51 £0.14 0.49 £0.18 0.50 £0.18 0.50 £0.15 0.51£0.14
’ (10,10,0 =1.5) | 0.25+£0.08 0.58 £0.14 0.59 £0.15 0.66 £ 0.08 0.17 £0.07
0.5 (30,30,0 = 4.5) | 0.52£0.08 0.44 £0.17 0.45 £0.19 0.50 £0.14 0.42 £0.07
(60,60,0 =6.5) | 0.51 £0.14 0.39 £0.17 0.40 £0.19 0.41£0.15 0.45 £0.13
(10,10,0 = 1.5) | 0.62+£0.08 0.80 £ 0.09 0.81 £0.09 0.82 £ 0.07 0.61 £0.08
0.05 (30,30,0 =4.5) | 0.64£0.13 0.59 £0.17 0.59 £0.17 0.63 £0.14 0.64 £0.13
0.05 (60,60,0 =6.5) | 0.55£0.17 0.50 £0.19 0.50 £0.19 0.54 £0.17 0.55 £0.17
’ (10,10,0 = 1.5) | 0.62 £0.08 0.58 £0.15 0.59 £0.16 0.73 £0.11 0.47 £0.08
0.5 (30,30,0 =4.5) | 0.64£0.13 0.44 £0.17 0.45 £0.19 0.52 £0.15 0.57 £0.13
(60,60,0 =6.5) | 0.55 £0.17 0.39 £0.17 0.40 £0.19 0.41£0.15 0.51 £0.17

TABLE 4: SSIM values for various regularizers for different blur and noise parameters. The results are of form mean=+std.

The statistics are calculated for 150 random samples from the histology image

Noise | Lamda Blur Kernel L2 Laplacian Maximize Cells | Cross Entropy | KL Divergence
(10,10,0 = 1.5) | 0.25+0.08 0.304+0.10 0.25 4 0.08 0.25 4+ 0.08 0.25 4 0.08
0.05 (30,30,0 =4.5) [ 0.52+£0.08 0.52+0.08 0.52+0.08 0.53 £0.08 0.52+0.08
015 (60,60,0 =6.5) | 0.51£0.14 | 0.51+0.14 0.51+0.14 0.51+0.14 0.51+0.14
’ (10,10,0 =1.5) [ 0.25£0.08 0.48£0.10 0.25 £ 0.08 0.25 £0.08 0.25 +0.08
0.5 (30,30,0 =4.5) | 0.52£0.08 | 0.53 £0.08 0.52 +0.08 0.53 £0.08 0.53 £0.08
(60,60,0 =6.5) [ 0.51+£0.14 [ 0.51+£0.14 0.51+0.14 0.51+0.14 0.51+0.14
(10,10,0 = 1.5) | 0.62 £ 0.08 0.66 & 0.08 0.62 4 0.08 0.61 £ 0.08 0.62 4 0.08
0.05 (30,30,0 =4.5) | 0.64£0.13 0.64+0.13 0.64+0.13 0.65+0.13 0.64+0.13
0.05 (60,60,0 =6.5) | 0.55£0.17 0.55 £0.17 0.55 £0.17 0.56 £0.17 0.56 £0.17
’ (10,10,0 =1.5) | 0.62£0.08 | 0.77 £0.05 0.62 +0.08 0.60 £ 0.08 0.60 = 0.09
0.5 (30,30,0 =4.5) | 0.64£0.13 0.64+0.13 0.64+0.13 0.65+0.13 0.65+0.13
(60,60,0 =6.5) | 0.55£0.17 | 0.55+0.17 0.55 +£0.17 0.54+0.15 0.55 +£0.16

TABLE 5: SSIM values for various regularizers for different blur and noise parameters. The results are of form mean=std.

The statistics are calculated for 150 random samples from the histology image




