Denosing Event Data with Neural Networks

Tianshu Kuai, Yan Ma, and Yihan Ni

Abstract—Event cameras are bio-inspired sensors that generate sequences of events representing pixel-wise binary brightness
changes. The output event sequence can be inherently noisy because of random perturbations in its brightness threshold and camera
movement. Recent works in event data learning often use deep-learning based methods on voxelized event stream data. In this work,
we propose an event-denoising network trained in a self-supervised fashion to restore clean data from random shifts and reject outlier
events. Concretely, we employ a 3D U-Net architecture to denoise the voxelized event stream. Using our pre-trained denoiser as a
pre-processing module, we observe large performance gains in multi-class classification tasks for both training the classifier from
scratch and directly running inference on two different datasets, with huge potential to generalize to other downstream tasks in

event-based vision.

Index Terms—Event-based Vision, Denoising, 3D U-Net, Multi-class Classification

1 INTRODUCTION

Event cameras are bio-inspired sensors that mimic the
working principle of human retinas. Unlike traditional cam-
eras with rolling shutters that capture image frames at
regular frequencies, event cameras detect pixel-wise binary
brightness changes in the scene and output asynchronous
sequences of “events”. The advantages of event cameras
compare to RGB cameras include a high dynamic range,
microsecond-level temporal resolution, and no motion blur.
Therefore, event cameras are well-suited for high-speed
applications such as driving scenarios.

Since event cameras produce events based on light in-
tensity change, there could be noise in the events output
if the captured scene is changing fast or the camera is
not steady. There are plenty of methods to denoise image
data sampled from RGB cameras, however, they cannot be
directly applied to event data due to the difference in data
representations. In event data learning, deep-learning-based
approaches usually convert event streams to image-like data
and use image models like CNNs to do further processing.
In this work, we explore deep neural networks’ capabilities
in terms of denoising event data. We propose a 3D U-Net
structure that denoises voxelized event data. We train the
network in a self-supervised fashion as the model learns to
reconstruct the original event data from noise-augmented
event data. The trained denoiser can recover objects in the
noisy data, and can be used as a pre-process module to boost
classification performance. It shows robust performance in
the multi-class classification tasks on both dynamic and
static object datasets.

Our contribution in this work can be summarized as:

1) Event Classifiers trained on clean datasets become
much more robust to noise with our pre-trained
denoiser.

2) Event Classifiers can achieve higher test accuracy
training on noisy datasets if combined with our pre-
trained denoiser.

e Tianshu Kuai, Yan Ma, and Yihan Ni are with the Department of
Computer Science, University of Toronto
E-mail: {tianshu.kuai, yankuai.ma, nicky.ni}@mail.utoronto.ca

Fig. 1. An example of a typical event stream visualized in 3D. The events
are an asynchronous and unordered set of points.

3) The training of the denoiser is a fully self-supervised
process. No labels are needed for training, and the
model can take any event data as training input.

2 RELATED WORK
2.1

Since the event data samples are streams of events, ex-
isting methods usually transform the raw event streams
into image-like data that can be processed by CNNs. [1]
proposed a way to convert the event data from a four-
dimensional (x,y,t,p) structure, to a three-dimensional
voxel grid by projecting or summing one of the four di-
mensions. It shows that the Event Voxel Grid representation
performs well in classification and optical flow tasks. Specif-
ically, the Event Voxel Grid is obtained by dividing event
streams into a number of portions with equal temporal
length and projecting all events within each portion onto
individual image channels. If multiple events are projected
onto the same pixel in a time channel, the intensity of
that pixel accumulates based on the number of occurred
events. Data of opposite polarities are handled separately
and concatenated at the end of the processing step, doubling

Event Voxel Representation

the total number of channels. Therefore, for an event camera
with a spatial resolution of m by n, and an event stream of
AT seconds, we can turn it into an Event Voxel Grid with
2k channels of size m by n, each corresponds to its polarity
and time channel for AT /k seconds. [1] also proposed
another event data representation named the Event Spike
Tensor (EST), which is similar to the Event Voxel Grid struc-
ture. In the EST representation, the pixel intensities of each
time channel are replaced by the normalized timestamps of
the corresponding events. This representation produces the
same data dimensions as the Event Voxel Grid method and
preserves as much temporal information within each time
bin as possible.

2.2 Event Denoising

Recent work in denoising event data incorporates deep-
learning approaches. Event Probability Mask (EPM) [2]
presents a method for labeling real-world neuromorphic
camera sensor data by calculating the likelihood of generat-
ing an event at each pixel within a short time window. It also
proposed an event denoising CNN (EACNN) which extracts
features and does binary classfication on noise rejection.
EventZoom [3] is a recently proposed neural network ap-
proach for event denoising and super-resolution. It’s able to
effectively remove noisy events and achieves SOTA super-
resolution image reconstruction while being 10x faster.
EventZoom was built upon the 3D U-Net backbone which
first downsamples the event tensor with convolution lay-
ers and then upsamples it with deconvolution layers until
obtains the 2x feature map size. It also incorporated an E2I
module, as a combination of an event-to-image reconstruc-
tion network E2VID [4] and an image super-resolution (SR)
network FSRCNN, to leverage the RGB image information.

3 THEORY
3.1 Background

An event-based camera is an advanced sensor that detects
pixel-wise brightness change at microsecond level. Unlike a
standard camera, the output of an event-based camera can
be expressed as:

It
er = ®. (bg(Iii’“{))) : (1)

(z,y)

where e, is the event triggered at the pixel of interest (x,y)
with intensity I} . at time ¢ due to log brightness change
exceeding a threshold ¢, and the function ®. is defined as:

1 if Tt Z €
—1 elseifr; < —e (2)
0 otherwise

D (ry) =

In general, we consider the event with value ®.(r;) =
—1 to be a negative event, and the event with value
P (ry) = 1 to be positive event, which corresponds to
decreasing and increasing brightness changes at the pixel
of interest. We also refer this property as the “polarity” of
an event in subsequent sections.

Practically, we collect a set of asynchronous events as:

E= {ei}ij\il = {(Xi7Yiatiapi)}£i1 ; 3)

2

where x; and y; are the pixel coordinates, t; is the times-
tamp, and p; is the polarity of i-th event in an event stream.

A set of events can be converted to Event Voxels by
dividing the spatial and temporal dimensions into evenly
spaced bins. The value of each voxel is the number of events
that fall into it. It is common practice to handle the two
polarities separately, which leads to two set of voxels given
an event set where one set of voxels contain the information
only on the positive events, and the other set contains the
information only on the negative events.

Due to potential camera shakings and random perturba-
tions in the log brightness threshold, noise usually occurs in
real-world captures and can be modeled as:

It+nt
z,y)+ns
Ii_i’—>)> : 4)

€ = (I>e+nE (log(
(z,9)+ns

where n, corresponds to the random spatial shifts of the
events, n; corresponds to the random temporal shifts of the
events, and n. corresponds to the random perturbations in
the log brightness threshold. The random shifts often cause
the captures to be blurry, while the random perturbations to
the log brightness threshold will create new random events
or miss some events from the captures.

3.2 Proposed Denoiser

Following EventZoom [3], the denoising network is built
upon the 3D U-Net [5] backbone as shown in Figure 2. The
input event stream is first voxelized to four-dimensional
tensors (P, T, W, H) with each dimension representing the
polarity, time, width, and height, respectively. We choose
the 3D U-Net instead of its 2D counterparts for its larger
receptive fields to capture information in time channels,
which effectively improves its denoising capability for 4D
data.

Our U-Net architecture comprises a downsampling path
and an upsampling path each with four resolution steps.
In the beginning, the input’s polarity dimension only has 2
channels. As it forwards through the downsampling path,
this dimension piles up, and the exact number of channels
is given by c in Figure 2. Meanwhile, the input’s spatial size
decided by the width and height dimension is downscaled
by a stride of two, and the accumulated stride correspond-
ing to the original input size is given by s in the Figure.
Since the time dimension is not as large as the spatial
dimensions, it is kept consistent through the network. The
upsampling path is the reverse operation of the above. Each
step, it does skip connections by concatenating the output
from the previous step with the same-resolution-data in the
downsampling steps. The output is therefore the same shape
as the input, containing voxels from both polarities.

4 EXPERIMENTAL RESULTS
4.1 Datasets

We validate our method for event data denoising using
two datasets: the DVS128 Gesture Dataset [6] and the N-
Caltech 101 Dataset [7]. The reason for choosing these two
datasets is that they are representatives of capturing two
different kinds of movement. The DVS128 Gesture Dataset

(T, H, W)

Event voxelization
Stream > H

conv X2
max pool

+conv X2

conv X2
+ upsample

concatenate |

upsample

s=1

c=2 c=4+2

s= s=4 s=
c= c=8 c=32

s=16
c=64

7/

c=32+8 c=64+32

s=2
c=8+4

Fig. 2. The event denoising network employs a 3D U-Net backbone. First, the raw event stream is converted to 3D voxels for both polarities and
then fed into the network as input. In each step of the downsampling path, the data’s spatial dimension is halved, while the number of channels in
the original polarity dimension doubles. The process is reversed during the upsampling path. Four skip connections concat the intermediate feature
of the same resolution in each step. At last, the network outputs the denoised data as voxels with the same shape as the input for downstream

tasks.

uses a fixed camera to record moving objects, while the N-
Caltech 101 Dataset shifts the camera against a static picture
to create relative movements.

4.1.1 DVS128 Gesture Dataset

The DVS128 Gesture Dataset [6] captures 11 different types
of human gesture movements using a DVS128 (Dynamic
Vision Sensor 128) Event Camera. The data was grouped in
trials each recorded one subject stood against a stationary
background and performed a sequence of the 11 gestures
including “arm roll’, hand clap’, “air guitar’, etc. The dataset
was used to build the real-time, gesture recognition system
described. We cut the event recordings into individual ges-
ture performed by a user. Each gesture sample lasts for 6
seconds on average.

4.1.2 N-Caltech 101 Dataset

The N-Caltech 101 Dataset [7] is an event-based version
of the original frame-based Caltech101 dataset. It contains
8,246 samples from 100 object classes plus a background
class. The dataset was captured by moving the ATIS sensor
in front of an LCD monitor projecting various samples from
Caltech101. Each sample recording lasts for 1.2 seconds on
average.

4.2 Noise Data Generation

As there is no existing dataset collected and designed for the
task of event data denoising, we generate noisy event data
by adding noises to the original data from both datasets.
To simulate the noises n. on the log brightness threshold in
equation 4, we randomly remove and add events from the
original event stream using uniform distribution sampling

across the feasible spatial event coordinates. We add random
shifts in Gaussian distribution to the existing events in both
spatial and temporal directions to model the noises n, and
ng in equation 4. The events after random shifts can be
expressed in the following form:

E={e}Y, = {(xi + 00, yi + 0, ti + 01, p)}Y ., (5

where §5 ~ N (0, 05) is the noise sampled in spatial domain
with a zero-mean Gaussian and standard deviation oy, as
well as 0; ~ N (0, 0¢) corresponds to the noise in sampled
temporal domain with zero-mean Gaussian and standard
deviation o;.

4.3

We train our 3D U-Net denoiser in a self-supervised fashion
where we add noise to the original event data, and let the
3D U-Net reconstruct the clean event voxels. We use the
Mean Squared Error (MSE) Loss in training. The 3D U-Net is
trained for 30 epochs with the Adam [8] optimizer. As both
datasets are designed for multi-class classification, we use
the convolutional layers of a pre-trained ResNet-34 followed
by a linear classifier as the baseline classifier for comparison
and evaluation. Note that we replace the first layer in the
pretrained ResNet-34 to accommodate for the change input
channel dimension from 3 channels to the number of bins
along in the temporal dimension. The classifiers are also
trained for 30 epochs with the the Adam [8] optimizer. We
use voxel size of 9 x 180 x 240 and 9 x 130 x 130 for the
N-Caltech 101 Dataset and the DVS128 Gesture Dataset,
respectively. For evaluation, we freeze the parameters of
the denoiser and only do forward passes from the data
input for all testing setups. The denoiser’s output voxels

Implementation Details

are treated as input to our ResNet-34-based classifiers. For
noise generation, we specifically delete 20% of total events
randomly and add 50% of total events by random sampling
across the entire resolutions. Then we randomly select and
shift 80% of total events with a spatial shift sampled from a
zero-mean Gaussian of 20 pixels standard deviation, and a
temporal shift sampled from a zero-mean Gaussian of 0.0001
seconds standard deviation.

4.4 (Qualitative Results

We show qualitative results on both datasets in Figure 3 and
4. The denoised data exhibits a similar data distribution as
the original data. While the noisy data can hardly be dis-
tinguished by human eyes, the denoised image can present
the object shapes or moving trajectory quite clearly, showing
a great de-blurring capability. An interesting observation is
that the original data is not perfectly clean as there are noise
events that do not fall on the actual objects in the scene.
Our denoising model can also identify them as noisy events
and remove them, although they are treated as ground-truth
events in training.

4.5 Quantitative Results

For quantitative evaluations, we report the multi-class clas-
sification accuracies on both DVS128 Gesture [6] and N-
Caltech 101 [7] datasets. As we generate the noises our-
selves, we have the options of testing the trained classifier
using either the original input data or the noisy input data.
Therefore, we evaluate our denoising method under the
following two scenarios.

4.5.1 Direct Inference on Noisy Test set

We first train a ResNet-34-based classifier using the original
data, and directly run inference on the noisy test sets from
both datasets. As shown in Table 1 and Table 2, we observe
significant drops in classification accuracy on both datasets.
The reason for such large performance degradations is that
the classifier trained on the original event data cannot
handle the out-of-distribution noisy input. As shown in the
tables, if we run our trained denoiser first on the noisy data,
and feed the denoised event voxels into the classifier trained
on the original data, it successfully boosted the performance
on classification back to the similar level as tested on the
original data without any additional training. It indicates that
our proposed denoiser model can successfully estimate the
distribution of the original event voxels, which allows the
classifier trained on the original data to achieve the much
higher testing performance on the noisy test set. If we
use our denoiser on the original test set and the trained
classifier, we can also maintain competitive performance,
which shows that the denoiser can also handle the original
data. Overall, Table 1 and Table 2 show that our proposed
3D U-Net can be used directly to address the distribution
shifts from the training data to the noisy data without the
requirements of re-training the baseline classifiers.

4.5.2 Training on Noisy Training Set

We also test the effectiveness of our 3D U-Net denoiser
in the classifier training using noisy data. Specifically, we

TABLE 1
Evaluation on N-Caltech 101 test set using a trained classifier and
denoising 3D U-Net without additional training. The numbers are
reported as average classification accuracy (%).

| Method H Original Test Set | Noisy Test Set
(1) | Baseline Classifier 85.01 5.89
2) Ours + (2) 66.89 66.96
TABLE 2

Evaluation on DVS128 Gesture test set using a trained classifier and
denoising 3D U-Net without additional training. The numbers are
reported as average classification accuracy (%).

| Method H Original Test Set | Noisy Test Set
(1) | Baseline Classifier 93.36 17.32
@ Ours + (2) 71.61 87.24
TABLE 3

Evaluation on N-Caltech 101 and DVS128 Gesture noisy test sets with
training on the noisy training set. The numbers are reported as average
classification accuracy (%).

Method | N-Caltech 101 | DVS128 Gesture
Classifier only 71.63 89.45
Ours + Classifier 77.24 91.02

compare ResNet-34 based classifier trained on the noisy
data and ground-truth class label pairs, against the setup
where we train the classifier of the same architecture with
the denoised input data and ground-truth class labels pairs.
Note that we use our trained denoiser to get the denoised
data from noisy data, and during the training, the 3D U-
Net denoiser is not updated. We show the results of the two
setups in Table 3. Using the trained denoiser can improve
the final classification accuracies on both datasets as it is
able to provide cleaner input data for feature extraction and
pattern recognition.

5 DIScUSSION AND CONCLUSION
5.1 Limitations and Future Work

Despite our proposed approach achieves great classification
results in datasets with moving and static objects, further
work is needed to evaluate the downstream performance on
the tasks that require more fine-grained denoising such as
optical flow estimation and depth estimation. In addition,
our denoiser is trained from a fixed noise level. We could
further augment the noise generation by adding different
levels of noise so that the denoiser is generalized to var-
ious noise conditions. We are also interested in using the
downsampling part of the 3D U-net as a feature extractor
as it is trained to preserve event features from various noise
scenarios, and potentially use it in a more complex scene
such as in event driving recordings.

5.2 Conclusion

To summarize, we proposed a 3D U-Net denoiser that is
trained in a self-supervised fashion and can effectively esti-
mate clean data from a noisy event voxel. With the help of

Clean Noisy Denoised

Fig. 3. Denoising results shown as a single time channel (1/39 slice of total temporal length) event image from DVS128 Gesture dataset. Red pixels
represent positive events, green pixels represent negative events, and yellow pixels indicate that events of both polarities are present.

Clean Noisy Denoised

Fig. 4. Denoising results shown as a single time channel (1/9 slice of total temporal length) event image from N-Caltech101 dataset. Red pixels
represent positive events, green pixels reprsent negative events, and yellow pixels indicate that events of both polarities are present.

our pre-trained denoiser, classifiers trained on clean datasets
are able to gain much higher test accuracy on unseen noisy
datasets. Moreover, classifiers trained on noisy datasets can
also achieve marginal performance boost with our denoiser.
In addition, our denoiser shows robust performance in
multi-class classification tasks on both dynamic and static
object datasets. We can improve our denoiser by adding
various levels of noise during training, and we leave the test
of the denoiser on more downstream tasks to future work.

ACKNOWLEDGMENTS

We would like to thank Parsa Mirdehghan for his valuable
suggestions on our project. We also thank Professor David
Lindell and all the teaching assistants for putting together
this great course.

REFERENCES

[1] D. Gehrig, A. Loquercio, K. G. Derpanis, and D. Scaramuzza, “End-
to-end learning of representations for asynchronous event-based
data,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019, pp. 5633-5643.

[2] R. Baldwin, M. Almatrafi, V. Asari, and K. Hirakawa, “Event
probability mask (epm) and event denoising convolutional neural
network (edncnn) for neuromorphic cameras,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 1701-1710.

[3] P. Duan, Z. W. Wang, X. Zhou, Y. Ma, and B. Shi, “Eventzoom:
Learning to denoise and super resolve neuromorphic events,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2021, pp. 12824-12833.

[4] H. Rebecq, R. Ranftl, V. Koltun, and D. Scaramuzza, “Events-to-
video: Bringing modern computer vision to event cameras,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 3857-3866.

5] O. Cigek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ron-
neberger, “3d u-net: learning dense volumetric segmentation from
sparse annotation,” in International conference on medical image com-
puting and computer-assisted intervention. ~Springer, 2016, pp. 424-
432.

[6] A. Amir, B. Taba, D. J. Berg, T. Melano,]. L. McKinstry, C. di Nolfo,
T. K. Nayak, A. Andreopoulos, G. Garreau, M. Mendoza, J. A.
Kusnitz, M. V. DeBole, S. K. Esser, T. Delbriick, M. Flickner, and
D. S. Modha, “A low power, fully event-based gesture recognition
system,” 2017 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 7388-7397, 2017.

[7] G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor, “Convert-
ing static image datasets to spiking neuromorphic datasets using
saccades,” Frontiers in neuroscience, vol. 9, p. 437, 2015.

[8] D.P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv preprint arXiv:1412.6980, 2014.

