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Abstract—Dense prediction vision transformers are the current standard of image segmentation, which arises from the model’s
incredible ability to understand the contents of the images it is fed, as well as predicting a value for every pixel of the image. Image
restoration is another task that involves dense prediction and requires a strong understanding of the content of images to perform
accurately. This paper provides an exploration of finetuning state of the art image segmentation models on image restoration tasks with
minimal changes to the architecture, to see what the fields can borrow from each other. We find that with minimal changes, the
segmentation model ViT-Adapter can be finetuned to achieve competitive results on deblurring, suggesting potential directions for
future research in image deblurring. We also provide potential reasons for why image segmentation models have qualities that image
deblurring may find useful, and also why they fail on image denoising.

Index Terms—Image Restoration, Image Segmentation, Dense Prediction, Vision Transformers, Finetuning

1 INTRODUCTION

VER since transformers proved their usefulness in NLP,
E they have been continuously adopted in a variety of
fields, and computer vision is no different. Vision trans-
formers have been seen to quickly overtake convolutions in
numerous different vision tasks, and are the fan favourite
model nowadays. Lots of work has gone into adapting
them for more complicated imaging tasks like segmentation,
which fall under the category of "Dense Prediction” due to
how a prediction is required for each pixel of the image.
To perform segmentation accurately, these dense prediction
vision transformers require a strong understanding of the
content captured within the image. In this paper, we explore
the flexibility and robustness of these segmentation models
by finetuning them on a different dense prediction task:
image restoration.

Image restoration covers a pretty broad range of tasks,
but this paper will mainly focus on denoising and deblur-
ring since those are broadly applicable and also the most
popular. For these tasks, we assume we have a corrupted
version of an image, and would like to recover the original
uncorrupted version. Since dense prediction vision trans-
formers should have a good understanding of the content
of images, and are capable of creating predictions for every
pixel, they already have an architecture that should be able
to perform image denoising and deblurring.

This paper contributes an exploration of bridging the
fields of image segmentation and image restoration by
finetuning these segmentation models to perform image
restoration with minimal changes to their architecture. We
find that segmentation models are capable of achieving
competitive results on image deblurring, but fall short for
denoising. Furthermore, by making use of a few small tricks,
the performance on these segmentation models improves
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Fig. 1. Visualized results of our models on image restoration tasks.
Top-Left: GoPro blurry image. Top-Right: Deblurred image with our ViT-
Adapter-Mask2Former model. Bottom-Left: SIDD noisy image. Bottom-
Right: Denoised image with our Swin-Mask2Former model.

dramatically for image restoration. These changes can be
summarized as:

1) Changing the number of output channels of a seg-
mentation head from the number of classes it has
been trained to segment over, to three (for the three
RGB channels).

2) Changing the upsampling method in the segmenta-
tion decoder from basic bilinear interpolation into
trained convolutions.

3) Adding in skip connections from the encoder fea-
tures to the decoder features.

4) Adding an additional module from NAFNet to fur-
ther process the final features.



2 RELATED WORK

2.1 Dense Prediction Vision Transformers

The original Vision Transformer (ViT) [1] was created and
applied on image classification. The independent patch
structure of transformers wasn’t well-suited for dense pre-
diction, so there have been many approaches to adapting
the original transformer structure to something more suited
for dense prediction. Pyramid Vision Trasformer (PVT) [2],
Swin Transformer [3], and SegFormer [4] all take different
approaches to creating features from different scales in
the image, as being able to create and aggregate features
from varying scales in the image is important for accurate
segmentation in difficult areas. Vision Transformer Adapter
(ViT-Adapter [5]) on the other hand, takes the original ViT
and adds on some additional adapter modules so that after
pretraining, the adapter modules inject additional informa-
tion into it so that it is capable of performing well on dense
prediction tasks. Mask2Former [6] makes use of masked
attention, constraining cross-attention to the predicted mask
regions. Pretraining the backbone has also taken a large
focus in recent years, with Contrastive Learning [7] and
Masked Image Modeling [8] both becoming competitive
pretraining methods, and BEiT-3 [9] achieving state of the
art results on ADE20k and COCO as of November 2022.

2.2 Image Restoration

Previous research that focuses on image restoration often
test their models on both denoising and deblurring tasks,
although there is some research into models specially for
one task. Uformer [10] uses a hierarchical encoder-decoder
network with transformer blocks, with nonoverlapping
window-based self-attention and a multi-scale restoration
module. Restormer [11] makes use of Multi-DConv Head
Transposed Attention (MDTA) blocks and gating mecha-
nisms on the linear layers. HINet [12] integrates instance
normalization into the blocks of their network to achieve
high quality results. “Simple Baselines for Image Restora-
tion” [13] suggests a Nonlinear Activation Free Network
(NAFNet), which uses no nonlinear activation functions,
and achieves state of the art results on both image de-
blurring and denoising. Swin Transformer has also been
explored on image restoration before [14], however that
exploration only utilizes Swin Transformer blocks for deep
feature extraction, and creates new architecture for shallow
feature extraction and image reconstruction modules. To
our knowledge, this is the first exploration of segmentation
models with minimal changes applied on image restoration
tasks.

Most of the competitive image restoration methods can
be viewed as variants of the classic UNet [15], which stacks
blocks in a U-shaped architecture with skip connections for
features on the encoder and decoder halves of the same size.
This motivates the exploration of using skip connections
in this paper. Uformer and Restormer also make use of
the transformer architecture, as can be inferred from their
names.
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Fig. 2. UperNet decoder and our proposed architecture changes. The
original goes through the top (gray) path while our proposed architecture
goes through the top (black) path. Changes are noted with red where
they happen.

3 METHOD
3.1 Segmentation Models

We will be exploring three established segmentation models
in this paper: Swin, Mask2Former, and ViT-Adapter. These
three models also tend to overlap in terms of encoder and
decoder.

Swin Transformer uses an encoder made of Swin trans-
former blocks, and UperNet [16] as the decoder. We specif-
ically use the base Swin model that was pretrained on
ImageNet-22K, and trained on semantic segmentation on
ADE20K. This version originally achieved an mIoU of 50.76
on ADE20K.

The original Mask2Former uses Swin as its backbone
and its titular Mask2Former as the decoder. We specifically
use the version with the base Swin model as its backbone,
pretrained on ImageNet-21K, and trained on semantic seg-
mentation on ADE20K. This version originally achieved an
mloU of 53.9 on ADE20K.

ViT-Adapter uses its ViT with Adapter modules for the
backbone, and Mask2Former as the decoder. We specifi-
cally use ViT-Adapter-Large for the backbone, pretrained
on ImageNet-22K using masked image modelling. For con-
sistency, we use the same Mask2former used for the Swin-
Mask2Former model, that has a feature dimension of 256
in its decoder. However, since ViT-Adapter-L does not
have a corresponding Mask2Former of this size (its original
Mask2Former uses a feature dimension of 1024), we reload
weights for the backbone from the pretrained version and
the weights for the decoder from the same mask2former
weights as Swin-Mask2former. This does mean this model
does not have a backbone and decoder that have been
trained to work together already, but ViT-Adapter has
achieved state of the art results with it’s backbone, so this
shouldn't affect the results of this model once finetuned.

3.2 Architecture Changes

There are four main architecture changes we explore in this
paper, all contained within the decoders of the segmentation
models. Along with these changes, the model is trained
to predict the residual between the original and corrupt
image, rather than just predicting the original image itself,
as most image restoration models are also trained in this
manner. All changes detailed are incremental: the change in
upsampling is always implemented alongside the change in
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Fig. 3. Final processing portion of Mask2Former and our proposed architecture changes. The original goes through the bottom (gray) path while
our proposed architecture goes through the top (black) path. Changes are noted with red where they happen.

output channels, the change in skip connections is always
implemented alongside the change in upsampling, and so
on. The changes to the UperNet decoder are detailed in
Figure 2. The changes to the Mask2Former decoder are
detailed in Figure 3.

In image segmentation, we need a good idea of exactly
where the object is, and predict scores for how likely a pixel
is a part of the object. However, in image restoration, since
we want to predict the precise offset between the corrupt
and original image, the usual nonlinear activation functions
(e.g. sigmoid) that create probabilities for segmentation
masks are actually undesirable here. The predictions for
image restoration models need to be more precise in ex-
act values than predictions for image segmentation masks,
which is what motivates these changes.

3.2.1 Output Channels

For the decoder UperNet, the output channels of the model
have been changed from the original number of classes it
was trained to perform segmentation on, to three for the
three RGB channels of an image. This is the bare minimum
change necessary for segmentation models to be applicable
for image restoration.

The decoder Mask2Former has a different structure in
it’s final output that requires slightly more changes. The
original Mask2Former creates class scores and mask scores,
and then combines them to create their final segmentation
mask scores.

Softmazx(c) x Sigmoid(m)

But the Softmax and Sigmoid constrains the model outputs
to be within an interval of [0, 1], which is undesirable when
we are predicting the residual in image restoration where
we sometimes may desire predicting a negative offset. So
for Mask2Former, the change to the final output channels is
instead:

Conv(c x m)

Where we keep the general structure of how the original
created their output, but remove the Softmax and Sigmoid
constraints, and add a convolutional layer that takes the in
the number of classes dimension the original was trained
on, and outputs three channels.

3.2.2 Upsampling

Both UperNet and Mask2Former use bilinear interpolation
for when they need to upsample. However, due to the
precise nature of predictions in image denoising and de-
blurring, this may be undesirable for getting the correct per-
pixel predictions. As such, the second potential change is
for the bilinear interpolation used within the decoders of
the models to be updated to something that uses trained
convolutions instead, to hopefully obtain more precise de-
tails upon reconstruction.

UperNet makes use of bilinear interpolation to go from
each feature map to the next, combining features from differ-
ent scales to create its final segmentation mask predictions.
Swin has already been explored on image restoration [14],
and there, the authors use a convolutional layer along with
pixel shuffle to upsample within their image reconstruction
decoder. We adopt that practice here, replacing bilinear
interpolation within UperNet with a convolutional layer
followed by pixel shuffle to upsample.

Mask2Former makes use of bilinear interpolation within
its pixel decoder when aggregating features, along with
a final bilinear interpolation from the segmentation mask
scores created from combining class and mask scores to-
gether to go back to the original size of the image. We
will replace only the final bilinear interpolation with a
transposed convolution for upsampling. We do not replace
the interpolation within the pixel decoder for simplicity, and
we use two transposed convolutions to upsample (with each
upsampling by a factor of two) because through experi-
mentation, transposed convolutions perform better than a
regular convolution followed by pixel shuffle.

3.2.3 Skip Connections

Skip connections are another common feature of image
restoration networks. This allows the model to not forget
about finegrained details while upsampling features from
deep within the network. Due to the importance of having
finegrained predictions for every pixel, skip connections
should be an important part of image reconstruction. We
implement a final skip connection within Mask2Former
after it’s computed the product between class and mask
scores but before upsampling.



3.2.4 NAFBlock

NAFNet currently achieves state of the art results on image
restoration with a simple design consisting of its NAFBlocks
(Nonlinear Activation Free Blocks) and up/downsampling.
We borrow one of these NAFBlocks and add it to the
decoder after the skip connection but before upsampling
within Mask2Former, to see how these blocks operate in a
new setting and see if adding additional layers can improve
the model’s performance.

4 EXPERIMENTS

4.1 Datasets

We train our models on SIDD [17] for image denoising
and GoPro [18] for image deblurring. For SIDD, we will
specifically be using the SIDD-Medium Dataset with sRGB
images, not the full SIDD dataset, due to size constraints.
For GoPro, we will be using the full GoPro dataset, but
taking out a subset of 200 instances for evaluation. We will
be measuring model performance on PSNR and SSIM for
both datasets.

4.2 Training

We use MMSegmentation [19] and the ViT-Adapter [5] code
base for implementing the three models. For both datasets,
we use train with an image size of 256 x 256. We use random
resized cropping, along with random horizontal and vertical
flipping. All models are trained on one GPU with 12GB
memory. All models are trained with the AdamW optimizer
to minimize the Dice Loss between the corrupted image plus
model output, and the ground truth image.

We use the exact same training schedule that was used
for training the original models, except with the learning
rate halved. Models are trained for at least 1000 iterations,
and early stopping occurs in the models no longer improve
on the validation set. To be more precise, the Swin-Upernet
model is trained with learning rate 3e-5, weight decay 0.01,
batch size 16, and no optimization on the absolute position
embeddings, relative position biases, and normalization.
The Swin-Mask2Former model is trained with learning rate
5e-5, weight decay 0.05, batch size 8, and the learning
rate is decreased by a factor of 0.1 for the backbone. The
VitAdapter-Mask2Former model is trained with learning
rate le-5, weight decay 0.05, batch size 4, and decreasing
learning rate in the backbone by a factor of 0.9 for every
additional layer.

We use a linearly decreasing learning rate starting from
the original learning rate and ending at a learning rate a
factor of le-3 smaller than the initial rate 4000 iterations
later. However, due to early stopping during training, most
models will not reach this point.

Due to size constraints, our models are unable to process
the entire image at once during evaluation time. To mitigate
this, we split the image up into 256 x 256 overlapping
patches, and send all patches through the model, then
recombine them back into the image of the original size,
with overlapping areas averaged.
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Fig. 4. Qualitative comparison of deblurring results of our models and
benchmark models.

4.3 Evaluation

We compare the deblurring and denoising results of our
models to state of the art methods on the subset of Go-
Pro and SIDD we remove to use for evaluation. NAFNet,
Restormer, and HINet are all competitive models on image
restoration, and they are also evaluated on the same subset
of SIDD and GoPro that we set aside from the training
sets for evaluation. Numerical comparisons can be found
in Table 1.

4.3.1 Deblurring

We compare the deblurring results of our models to state of
the art methods on GoPro dataset. As we show in Table 1,
our modifications to Vit-Adapter allow it to surpass the pre-
vious best method NAFNet by 1.46dB in PSNR. Qualitative
results are shown in Figure 4.

4.3.2 Denoising

We compare the denoising results of our models to state of
the art methods on SIDD dataset. As we show in Table 1, our
modifications to the models do improve them slightly, but



TABLE 1
Evaluation Results on GoPro and SIDD. We report the PSNR and SSIM on the evaluation sets we created for our models, along with three existing
image restoration models. Our best deblurring model exceeds current state of the art deblurring models on our GoPro evaluation set.

Model GoPro SIDD
PSNR | SSIM | PSNR | SSIM
Swin-UperNet Output Channels || 28.05 | 0.8581 | 27.79 | 0.5346
Upsampling 29.03 0.8734 28.04 0.5412
Swin-Mask2Former Output Channels 28.44 0.8675 27.89 0.5374
Skip Connections || 30.22 | 0.9013 | 30.63 | 0.6680
NAFBlock 30.43 0.9059 | 31.72* | 0.7027*
ViTAdapter-Mask2Former | Output Channels || 29.50 | 0.8808 | 27.82 | 0.5356
NAFBlock 31.83* | 0.9224* | 29.06 0.5880
NAFNet 30.37 | 0.9404 | 42.01 | 0.9706
Restormer 29.93 0.9337 | 40.20 0.9608
HINet 30.31 0.9350 41.27 0.9677
4.4 Ablation Studies
The change made to output channels is necessary for seg-
mentation models to perform image restoration, so there is
no further analysis into it’s benefits.

As we show in Table 1, the change in upsampling
improves results for the Swin-UperNet model by 0.98dB
PSNR and 0.0153 SSIM. The improvements for SIDD are

Reference Noisy much smaller and inconsequential. Swin-UperNet also has
the lowest performance of the three, which was expected
since the original Swin transformer came out much longer
ago and also performs worse on segmentation than the other
two models.

For Swin-Mask2Former, the change in upsampling as
well as adding in an additional skip connection improves
its results on deblurring by 1.78dB PSNR and 0.0388 SSIM,
while also improving results on denoising by 2.74dB PSNR

NAFNet Restormer

HINet Swin-UperNet (Ours)

Swin-Mask2Former(Ours) ViT-Adapter-Mask2Former (Ours)

Fig. 5. Qualitative comparison of denoising results of our models and
benchmark models.

the results are still nowhere close to state of the art denoising
methods. Our best model in this case is our modified Swin-
Mask2Former. Qualitative results are shown in Figure 5.

and 0.1306 SSIM. The improvements are larger for denoising
than deblurring. This does potentially suggest that if we
adopted the typical image restoration model structure with
skip connections and transposed convolutions for features
of every scale, instead of only at the last scale, we could
potentially achieve even better performance. Additionally
adding an NAFBlock makes slight improvements to its per-
formance on deblurring, while making large improvements
to its ability to denoise.

For ViTAdapter-Mask2Former, the change in upsam-
pling, additional skip connection, and an additional NAF-
Block result in a performance increase of 2.33dB PSNR and
0.0416 SSIM on deblurring, achieving competitive results on
deblurring in terms of PSNR. It also results in a performance
increase of 1.24dB PSNR and 0.0524 SSIM on denoising, but
performance is still far from Swin-Mask2Former and state of
the art models. Both this model and Swin-UperNet achieve
a initial performance on SIDD, so it’s also possible that
adding in skip connections and an NAFBlock for UperNet
would also improve it’s performance there. However, since
both of these models struggle greatly with denoising and
are far from state of the art results, further research in this
direction is probably not worth it. Since the performance
is so outstanding on deblurring, further research into using
this model’s architecture and pretraining techniques may be
useful for improving current deblurring models.



Fig. 6. Swin-Upernet final segmentation masks on the original (top)
image, a noisy (middle) image, and a blurry (bottom) image for the class
"Vehicle”

Swin-Mask2Former performs the best on denoising out
of all three models, beating ViT-Adapter-Mask2Former by
a wide margin. This does suggest that the Swin backbone
is more suited to denoising than Vit-Adapter is. This could
potentially be due to the differences in architecture between
the two, where Swin is better at paying attention to tiny
patch details while ViT-Adapter is better at understanding
the overall content within the pictures. Another potential
reason is the Swin backbone was original pretrained using
the typical supervised method on ImageNet, while the ViT-
Adapter backbone was pretrained using Masked Image
Modelling, giving it better potentially a stronger under-
standing of the content and objects within the image, but
as a result struggling greating with caring more about the
tiny noise around objects instead of the objects itself.

4.5 Segmentation Masks

We display the segmentation mask outputs for images
sent through the already trained Swin-Upernet and Swin-
Mask2Former on semantic segmentation (which are also
the model weights we reload training from). As seen in
Figure 6 for Swin-UperNet, the model is still capable of
recognizing the object and its class even when the image
is blurry, although the regions it predicts that are a part
of the vehicle are much less certain. The same applies for
Figure 7 for Swin-Mask2Former, although as can be seen,
this model is much more capable of recognizing where
the vehicle is despite it being blurry. It is still much more
uncertain around the edges, but it still performs much better
on segmentation than on a blurry object than Swin-UperNet.
This could potentially be why it performs better than Swin-
UperNet on image deblurring. This also gives a motivation
for further analysis into borrowing components from image
segmentation for image restoration.

As can be seen in both Figures, the model outputs are not
sensitive to the noise in the image, and the segmentation

Fig. 7. Swin-Mask2Former final segmentation masks on the original
(top) image, a noisy (middle) image, and a blurry (bottom) image for
the class "Vehicle”

masks have very little change between the original and
noisy images. While this is a desirable trait for image seg-
mentation models, it is not desirable for image denoising as
the model must be sensitive to the noise This does provide a
potential reason for why the models performed much worse
than state of the art for image denoising.

5 CONCLUSION

In this paper, we explore finetuning image segmentation
models for image restoration instead. To be specific, we
explore using the backbones Swin and ViT-Adapter, and the
decoders UperNet and Mask2Former. The changes imple-
mented are minimal and contained within the decoder, and
mimic common architecture choices used in other image
restoration models. Specifically, we explore changing the
output channels, changing the upsampling method to one
that uses trained convolutions, adding in a skip connection,
and adding in an NAFBlock from NAFNet.

We find that these image segmentation models are ca-
pable of achieving competitive results on image deblur-
ring, but do not have the structure required to perform
image denoising. Our best image deblurring model (ViT-
Adapter with Mask2Former) improves over our second
best image deblurring model (Swin with Mask2Former) by
1.4dB PSNR, as well as achieving competitive performance
with other image restoration models. Since the only change
between the two models is the backbone (Swin and ViT-
Adapter), we believe that either the architecture of ViT-
Adapter is superior, or ViT-Adapter’s use of masked image
modelling for pretraining is better than the traditional su-
pervised pretraining on ImageNet. We believe that it may be
beneficial for further research in image deblurring to borrow
some ideas from these state of the art image segmentation
models in terms of their backbone architecture or their
pretraining method.
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