Synthesis of brain tumor MRI images using GAN
aggregation with style transfer

Sarah Hindawi, Suman Bagri, Vignesh Edithal

Abstract—Tumor classification and detection are critical for a quick and effective cure. This motivates the idea of developing an
automated deep learning (DL) method for classification of brain tumor images. However, DL has raised concerns regarding invading
patients’ privacy. Also, it is expensive and time-intensive to collect large amounts of MRI images. In addition, many medical imaging
datasets are imbalanced which makes it harder for the model to detect outliers. Hence, data augmentation is a crucial necessity in
medical image analysis. Traditional data augmentation methods such as rotation, scale, crop, etc. create highly correlated images that
lack variance which may prevent DL models from learning the underlying features of an image. Meanwhile, Generative Adversarial
Networks (GAN) have shown promising results in generating synthetic data with good generalization ability to large image datasets.
GANSs also serve as an anonymization tool which reduces data handling costs. In this work, we use the Aggregation GAN (AGGrGAN)
[1] model to capture both the unique features and localized information of a source image using style transfer and also the shared
information among the different latent representations of multiple images using multiple GANs. We apply style transfer after
aggregation to increase resemblance to the original images. Then, we perform an ablation study of aggregation and style transfer to
evaluate their impact on performance. Finally, we train a classification network to study the impact of injecting fake images into the
training dataset on the performance of the classifier, this also allows us to evaluate the images qualitatively. We make our code

available at https://github.com/edithal-14/csc2529-2022-project.

Index Terms—GAN, MRI, Brain, Tumor, Style Transfer, Aggregation, DCGAN, WGAN, UNet, Data Augmentation

1 INTRODUCTION

BRAIN tumor identification is crucial to prevent long
term disabilities. Severe cases such as High Grade
Glioma may be fatal. Magnetic Resonance Imaging (MRI)
is a powerful non-invasive tool for obtaining these brain
scans. MRI scans can provide key information such as-the
location, shape, size and the growth stage of the brain tu J
To perform any medical image analysis using deep learning
techniques, a sufficient volume of data with variability is
required. However, traditional image augmentation meth-
ods such as scale, rotation, crop etc. create highly correlated
images which aréamnable to capture the underlying features
of the source im%¥es. In.addition, they might change the
pattern useful for diagnes. Class imbaShce is another
reason to-apply augmentation. Generative Adversarial Net-
work (GOI) models have shown promising results in gen-
erating synthetic data with good generalization ability to
large datasets. In this work, we use the Aggregation GAN
(AGGr&AN) model to capture both the unique features and
localized information of a source image using style transfer
and also the shared information among the different latent
representation of multiple images. We then perform an abla-
tion study to quantitatively evaluate (using PSNR and SSIM
scores) the generated images and also to study the impact
of aggregation followed by style transfer. For a qualitative
analysis, we train a classification network using both real
images and a mixture of real and fake images to study the
effectiveness of the images generated by our models. All our
experiments have been performed on the BraTS 2020 dataset
[2] [3] [4]. We start off with a literature study of related
works in the next section. Then, we describe the BraTS 2020
dataset and explain the data pre-processing steps in detail.
In the methodology section, we explain in brief the internal
working of a GAN model as described in [5], then we

move on to describing various GAN architectures such as
DCGAN [6], WGAN [7], UNet GAN [8]. We also explain the
aggregation logic used in AGGrGAN and provide details
of the style transfer technique. The last section contains
detailed quantitative/qualitative analysis followed by some
concluding remarks.

2 RELATED WORK

Han et al. [9] have applied DCGAN and WGAN separately
on the BraTS 2016 dataset to generate artificial MRI ﬂs.
To validate their results, they conducted the Visual Ti g
test with 53% accuracy for WGAN. Nie et al. [10] have used
Fully Convolution Network (FCN) as generator and a basic
CNN as the discriminator, they have proposed 3D FCN to
estimate target image from the corresponding source image,
they have used ADNI dataset and have obtained a mean
PSNR of 34.1. Emami et al. [11] have proposed a GAN
based model where ResNet is used as the generator and
discriminator is a CNN with five convolutional layers which
classify the image as real or fake, they achieved a mean
PSNR of 26.6 &+ 1.2 for an IRB approved dataset. Shin et
al. [12] segmented the overall scans of Alzheimer’s Disease
Neuroimaging Initiative (ADNI) [13] dataset and BraTS
dataset into brain anatomy and tumors using pix2pix GAN
[14]. They have obtained the augmented scans by applying
different combinations of the segmented brain anatomy and
tumor labels by introducing some alternations. Sarkar et
al. [15] created a CNN model to detect the type of brain
tumor using MRI scans to classify meningioma, glioma and
pituitary tumors.

TABLE 1
Sample images from BraTS 2020 dataset where each row represents
the MRI imaging modality

T1

Tlce

T2

T2-
FLAIR

3 METHODOLOGY
3.1 Dataset description

We use BraTS 2020 dataset for all our experitpents. It con-
sists of four MRI modality classes namely, weighted
images (T1), Post contrast T1 weighted images (T1ce), T2
weighted images (T2) and T2 Fluid Attenuated Inversion
Recovery (T2-FLAIR). These samples have been acquired
with different clinical protocols and various scanners from
multiple institutions. Training data contains a total of 369
NIfti files for each class and testing data contains 125 Nifti
files for each class. A Nifti file corresponds to a 3D image
acquired by a MRI scan [1]. The middle layer of the 3D
image is chosen for all experiments since that is the biggest
in size and contains more details as compared to the other
slices which are smaller in size. Each image has a resolution
of 240 x 240 pixels. However, due to limited resources at
our disposal we chose to resize the image to 64 x 64 pixels
resolution for all our experiments. This also helps with
training the GAN model as explained in the later sections.
Sample images from the dataset are shown in Table 1.

3.2 A brief introduction to Generative Adversarial Net-
work (GAN)

GAN is a deep learning (DL) framework to capture the
distribution of training data such that we can generate new
data from that distribution. They were first described in [5].
They consist of two competing models namely Generator
and Discriminator. The job of the Generator is to spawn
"fake images” that look like the training images. The job
of the Discriminator is to classify whether a given image is
real or fake. During training, both of the models compete
in a game with each other to minimize their losses. The
equilibrium of the game is when the Generator produces

2

perfect "fake images” and the Discriminator is left to always
guess at 50% probability.

Before we formally define the losses of both the models
in a GAN, we would like to mention some notation. Let, x be
the data representing an image, pdqtq represents the training
distribution, pjatent represents the latent distribution. The
output of Discriminator D(x) is the probability of the given
image being real. The output of the Generator G(z) is a fake
image where z is the latent distribution of the training distri-
bution. So, D(G(%z)) is the probability of a generated image
("fake image”) being classified as real. As described in [5],
D and G play a minmax game where D tries to maximize
the log-probability that it classifies correctly (log(D(z))). G
tries to minimize the log-probability that D will predict its
output to be fake (log(1 — D(G(z)))). From the paper, the
GAN loss function is described as follows.

mingmazpV(D,G) =
Esnpaata(@) 108 D(Z)] + Ezpyyrene(z) [l08(1 — D(G(2)))]

In theory the solution to this game is where preqr =
Pfake, however, in practice this is rarely achieved, this
makes training a GAN an inherently difficult task. The
convergence of GANSs is still an active area of research.

3.3 AGGrGAN model

The aggregation GAN (AGGrGAN) model as described in
[1] consists of two different Deep Convolutional GANs
(DCGANS) and one Wasserstein GAN (WGAN). The two
DCGAN:Ss differ in the way the latent vector is up-sampled
to generate the fake image, one uses transposed convolution
layers and the other one an explicit up-sampling operation.
The images from each of the GANs are merged together
using a weighting scheme which is based on edge detection
and PSNR/SSIM metrics. To further increase the quality of
the images, style transfer technique is applied to the output
of each GAN and the aggregated image. The architectural
diagram of this model is presented in Figure 1. In the
upcoming sections we talk about each of these components
in detail.

Generated Image 1

> DCGAN E
Generated v
Training N WGAN Image 2 > Aggregation
Images
r 7'y
‘f Aggregated
- Image
N U-Net GAN Generated Image 3 ,
-
Ry Artificial | Style Transfer using
o Image |° VGG-19

Fig. 1. Architecture diagram of Aggregate GAN (AGGrGAN)

3.4 DCGAN model

DCGAN was introduced in [6], it is an extension of the
GAN model described above where Convolutional and
Transposed Convolutional layers are used repeatedly in the
Discriminator and Generator model respectively. The Dis-
criminator uses strided convolutional layers to repeatedly
downsample the image to a scalar value, it is suggested to
use strided convolution instead of max/mean pooling layer
since the former allows the model to learn the downsam-
pling operation suitable for the given data. The Generator
uses strided transposed convolutional layers to repeatedly
upscale the latent vector (noise sampled from a multivariate
normal distribution) to generate a “fake image”. Both the
models use Batch Normalization (BatchNorm) layers to
regulate gradients. The Generator and Discriminator use
ReLU and Leaky ReLU activation functions respectively,
LeakyReLU helps in healthy flow of gradients across the
network and prevents issues such as vanishing gradient
problem.

The Generator uses 5 layers of transposed convolutional
layers interspersed with BatchNorm and ReLU layers to up-
sample a latent vector of size 128 to a single channel 64 x 64
image, it uses the Tanh activation function as the last layer
for output. The Discriminator uses 5 layers of convolutional
layers interspersed with BatchNorm and Leaky ReLU layers
to downsample the 64 x 64 image into a scalar value, it uses
the Sigmoid activation function as the final layer to output
a scalar probability value.

DCGAN is trained using a Binary Cross Entropy (BCE)
loss where the ground truth y value for real image is 1
and fake image is 0, this allows us to choose between two
different log values in the BCE loss.

ln = —((yn *logzp) + (1 — yn) *log(1 — z,)) (1)

The Discriminator loss is calculated in two steps. First,
we feed forward the Discriminator with real images and use
y = 1 to calculate BCE loss. Then we create a fake image
using feed forward of Generator which is fed to the Dis-
criminator and BCE loss is calculated using y = 0. The sum
of these losses is the Discriminator loss. The Generator loss
is calculated by creating a fake image using feed forward
of Generator, then passing it through Discriminator where
the BCE loss is calculated using y = 1. At the end of every
mini batch (batch size = 128) the optimizer step is performed
(Adam with betal = 0.5 and Ir = 2e-4). We perform a
total of 500 epochs on the training data (369 images) for
each modality. The Discriminator loss, Generator loss, mean
PSNR and SSIM scores of each mini batch is stored for
plotting in order to visualize the training process.

3.5 WGAN model

Wasserstein GAN proposed by [7] is an extension of GAN
which improves training stability and uses a loss function
which is more indicative of the quality of generated images.
It uses a Discriminator (called Critic in WGAN) which
outputs different score for real and fake images instead of a
probability value. This change is motivated by the fact that
Generator should seek a minimization of Earth Movers (EM)
distance between the observed distribution and generating

3

distribution. EM distance is chosen since it produces large
gradients even for large difference in the observed and
generated distributions. The Discriminator loss in this case
is the negation of difference between the critic scores of
real and fake images. The Generator loss is the negation
of the critic score of fake images. It is to be noted that when
training WGAN the generator model is updated only one
time per n.ritic (5 in our case) updates of the critic model.
Following is the equation of critic loss in WGAN.

W (P, Py) = sup)f||,<1Be~p, [f(2)] — Eenp, [f(2)] (2)

Here sup is the least upper bound and f is a 1-Lipschitz
function following the constraint.

[f(z1) = f@2)]| < lar — 22| ®)

We use two different WGANs based on how the
1-Lipschitz constrained function is implemented. In the
WGAN model, we clip the weights of the critic between -
0.01 and 0.01. However, the WGAN paper suggests that this
is not the best way to enforce the 1-Lipschitz constraint. In
the WGAN-GP (WGAN Gradient Penalty) model, we add a
penalty term to the critic loss based on how much the second
norm of the gradient moves away from 1. The gradient
is calculated at an interpolated point which lies between
observed and generated distributions. It is suggested not
to used BatchNorm layers in the Critic model when using
gradient penalty.

W (P, Py)+ = A% Ezup,[(VeD(2) — 1)7] 4)

Here) is the regularization parameter which is set to 10
in our case and £ is the interpolated point.

For the training of WGAN and WGAN-GP we use image
size of 64 x 64 pixels resolution and latent vector size of 128.
We run 500 epochs with a batch size of 32 with Ir = 1e-3 and
betal parameter of Adam optimizer set to 0.5

3.6 U-Net GAN

One of the major challenges for GANs is the ability to
produce locally and globally coherent images [8]. In order to
tackle this problem, the authors of [8] proposed a modifica-
tion to the “vanilla” GAN where the standard classification
network used as a discriminator (D) was replaced with
an encoder-decoder framework of a U-Net. In an encoder-
decoder network, the encoder acts as a classification net-
work that downsamples the input capturing global image
context which is then fed into a bottleneck layer. The de-
coder, subsequently, upsamples the output of the bottleneck
by accommodating encoder output at each level using skip-
connections thus learning locally-relevant details. A U-Net
classifier also specializes in providing state-of-the-art results
while requiring only a few training images to learn. It does
so by using each training image efficiently to learn a more
precise segmentation map.

Our implementation of the U-Net GAN differs from [8]
in two main areas:
Architecture:

Method T1 PSNR T1 SSIM TICE_PSNR |T1CE_SSIM

DCGAN 213 0.69 25.57 0.7
DCGAN+style transfer 29.64 0.87 32.46 0.86
WGAN 19.43 0.63 214 0.36
WGAN+style transfer 28.49 0.85 30.74 0.76
WGAN-GP 21.26 0.73 22.14 0.71
WGAN-GP+style transfer 28.88 0.85 32.27 0.85
UNetGAN (normal weight init) 15.79 0.63 12.77 0.29
UNetGAN (normal weight init)+style transfer 25.21 0.69 19.9 0.31
UNetGAN (ortho weight init) 17.88 0.71 20.4 0.66
UNetGAN (ortho weight init)+style transfer 27.63 0.79 26.91 0.79
AGGIGAN (total agg) 19.42 0.67 20.01 0.38
AGGIGAN (total agg)+style transfer 28.08 0.81 28.45 0.6
AGGrGAN (top 3 PSNR) 19.12 0.69 22.85 0.58
AGGrGAN (top 3 PSNR)+style transfer 28.62 0.84 311 0.8

Fig. 2. Ablation study showing the effectiveness of aggregation and style transfer. Without the style transfer the order of performance that we get
is DCGAN > WGAN-GP > WGAN > AGGrGAN > UNet GAN (orthonormal weights) > UNet GAN (normal weights). The impact of style transfer
seems to be significant. In the case of DCGAN it led to a PSNR increase of 8 points and SSIM increase of nearly 0.2 points.

We use a standard U-Net architecture (as described in
[16]) as base for the Discriminator(DY) with a few mod-
ifications. First, we use Leaky ReLU (with negative slope
= 0.2) as activation functions between convolutional layers.
Second, for down-sampling (in the encoder), we use average
pooling with a 2 x 2 kernel size. Third, for up-sampling
(in the decoder), we use transposed convolutional layers
with a 2 x 2 kernel size and a stride of 2. Finally, we use
a convolutional layer with a 24 x 24 kernel size which
produces a singular value for 64 x 64 input image size.
This is, subsequently passed through a sigmoid activation
function to give a probabilistic value indicating real/fake
image. As part of our exploratory study, we also used 2
different weight initialization methods for the Discrimina-
tor: Normal(sampled from N(0,0.02)) and Orthogonal (as
described in [17]). The Generator(GY) architecture is exactly
the same as that for DCGAN.

Training:

We adopt a training methodology similar to that for
DCGAN. The BCE loss is used to train both the GV and
the DY as described in 3.4. Training is done for 1000 epochs
with a batch size of 128. Adam optimizer with betal=0.5,
beta2=0.999 and Ir=2e-4 is used for both GV and DV.

The main reason behind using a different U-Net GAN
architecture than [8] was to keep the training process same
for all the GANs. However, it is worthwhile to note that this
architecture may not result in the best possible synthetic
image generation in terms of evaluation metrics as this
architecture does not make use of the per-pixel outputs from
the Discriminator to train the Generator but rather combines
them to produce a singular value (fake/real input image) to

compute the Generator loss.

3.7 Aggregation

From the set of 5 (1 DCGAN + 2 WGAN + 2 UNet GAN)
fake images generated, we choose the top 3 images based
on SSIM/PSNR as suggested by [1], aggregation algorithm
is then run on these images. Firstly, we apply a Sobel filter
to produce edge mapped images, then a Gaussian filter is
applied to smooth the edges (we found sigma = 2 to be
the best for this purpose). Then, the images are weighted
based on the value of this smoothened edge mapped image.
Finally a weighted addition of the images is carried out to
generate the aggregated image. We also experimented with
a PSNR/SSIM metric based weighting scheme but found the
results to be similar to that of the above. In the aggregation
algorithm proposed in [1], they only chose top 2 out of 3
fake images based on PSNR/SSIM metrics. However, we
experimented with an ablation study of removing this top
n selection component by performing aggregation across all
the images. As mentioned in the result and analysis section
this proved to be not very effective.

3.8 Style Transfer

We apply style transfer to the output of GAN models to
improve the resemblance of synthetic images with respect to
the real images. We use a pre-trained VGG-19 model (pre-
trained on ImageNet) to extract style and content features
of the image. The synthetic image is passed through the
intermediate layers 0, 5 and 10 of the VGG-19 model and
the resulting output is used to calculate the total loss which

is a linear combination of style loss (weight = 10, alpha) and
content loss (weight = 5, beta). The parameters alpha and
beta can be tuned to control the degree of similarity. The
total loss is minimized by an Adam optimizer with betal =
0.9 and beta2 = 0.999. The content image (fake image) and
the style image (real image) is given to the model and the
optimizer updates the content image to minimize the total
loss every epoch. We used 500 epochs for the style transfer
process.

3.9 Classifier model

To classify the images as either T1 or Tlce class, we used a
classification model which consists of 2D convolution, ReLU
and max pooling layers. We use 2 blocks each consisting of
2 Conv2D layers followed by a ReLU and a max pooling
layer. Finally we flatten the output and pass it through 2
consecutive linear layers. We used cross entropy loss for
training the model. We chose a batch size of 256 and image
size of 64x64. We used Adam optimizer with learning rate
of 1e-3 for 15 epochs for all the cases. Our case study was
performed on 5 different proportions of real data and fake
data which we used to train the model. These 5 cases are
explained in detail in the next section.

4 RESULTS AND ANALYSIS

4.1 Evaluation metrics: SSIM and PSNR

To quantitatively evaluate our approach we use Peak Signal
to Noise Ratio (PSNR) and Structural Similarity Index Mea-
sure (SSIM). We use these metrics to evaluate the perfor-
mance of each of the individual GANs and the aggregated
image. These metrics are also used to evaluate the perfor-
mance after style transfer. We now formally define these
metrics

PSNR: It denotes the ratio of maximum intensity value
and present noise value. Maximum intensity in our images
is 255 and the square root of the Mean Squared Error (MSE)
can be used to measure noise. Therefore, PSNR is evaluated
as follows:

PSNR = 20log,, MAX;/VMSE (5)

SSIM: It denotes the degree of similarity between two
images. The closer the similarity the higher the SSIM. Two
identical images have SSIM = 1. SSIM is evaluated using the
following formula

(QUzﬂy + Cl)(QUzy + ¢c2)

SSIM =
(13 + 1 + c1)(0F + 0 + ¢2)

(6)

Here, p,, and p,, are the mean intensity value of both the
images, o, and o, are the standard deviation of the intensity
values present in both the images. 0., is the covariance
between the intensities of both the images. ¢; and c; are
constants used to negate the weak denominator effect.

4.2 Generated Images

We run inference on the model and the trained weights to
generate the fake images corresponding to a real image.
For every real image we run 100 rounds of inference using
random gaussian latent vectors, then, we select the fake
image with the highest PSNR with respect to the real image.
Based on our experiments, we got the highest mean PSNR
across all the 369 image pairs for T1 and Tlce classes out of
the 4 classes in the BraTS 2020 dataset. Therefore, we only
used results for T1 and Tlce for analysis. Figure 3 shows
sample generated images using individual models and after
aggregation, for both the classes, note that these are the
images after style transfer. Note that we have upscaled the
images in the aforementioned figure from 64 x 64 resolution
to 256 x 256 resolution in order to better visualize the differ-
ences between images without the images getting distorted.
For this purpose we used the super resolution interface in
the cv2 python library, EDSR x4 pretrained model was used
with this interface to upscale the images dimensions by 4
times.

Real

DCGAN WGAN-GP UNET GAN AGGr GAN

Fig. 3. Sample images generated by DCGAN, WGAN-GP, UNet GAN
and AGGrGAN and their comparison with the real image. We only used
images from T1 and T1ce modality in our experiments. Note that these
images are upscaled from 64 x 64 resolution to 256 x 256 resolution
using upscaling techniques from cv2 python library.

Figure 2 shows an ablation study of various components
of the AGGrGAN model. Quantitatively judging, DCGAN
with style transfer seems to be the best performing model
with PSNR = 29.64 and SSIM = 0.87.

4.3 Training

In this subsection we analyze the generator and discrim-
inator losses as well as PSNR and SSIM metrics as the
model training progresses. We show the graphs for the
best performing model that is DCGAN. Figure 4 shows the
Generator and Discriminator losses as the training proceeds.
It is evident that training the Generator of a GAN is difficult
than training the Discriminator since the former loss is very
volatile as compared to the latter. The Generator loss first
decreases rapidly then starts decreasing steadily.

The PSNR value trend seems to agree with the above
graph, it increases rapidly in the beginning followed by a
steady increase as can be seen in Figure 5

The SSIM scores on the other hand continuously increase
during training if we ignore the fluctuations caused due to
instability in training a GAN. This can be seen in Figure 6.
These results show that we could have run the DCGAN for
more than 500 epochs, however, we couldn’t do it due to
resource constraints.

Generator and Discriminator Loss During Training
175 —G
— D_total
15.0 — D_real
— D_fake

Loss

! \.mmmaﬂuw»tumwuwwmwmum

0 200 400 600 800 1000 1200 1400
iterations

Fig. 4. Generator and Discriminator losses of DCGAN as training
progresses. The blue curve denotes the Generator losses which rapidly
decreases at first then steadily decreases as the training progresses.
The Discriminator loss on the other hand is more or less constant during
the training.

PSNR During Training

184 — psnr

0 200 400 600 800 1000 1200 1400

Fig. 5. PSNR score of the Generated images during training.

4.4 Classification using fake images

We conducted 5 case studies using different proportions of
real and fake data for training the classifier. In each case
50% of the testing data was used for validation. Note that
since T1 and Tlce images look different from each other
(especially in terms of intensity), most of the cases result in
a high accuracy score.

Case 1: We chose 80% of real images for training and
20% of real images for testing. This is our base case where
we classified the images with 89.8% accuracy.

Case 2: We chose 100% of the fake images produced by
WGAN-GP for training and 100% of real images for testing.
We used this setup to qualitatively assess the quality of the
fake images. Classification accuracy was 90.1% accuracy in
this case.

Case 3: We used 50% of real images and 50% of fake
images for training and 50% of fake images for testing. This
is the most common scenario in the real world where we
would use a mixture of real data with augmented data to
boost model performance. Classification accuracy was 95%
for this case which is considerably higher than Case 1.

Case 4: This is similar to Case 2 with the only change
being that we used the fake images generated by DCGAN
instead. Classification accuracy was 90% in this case which
is approximately the same as Case 2.

SSIM During Training

— ssim
0.6

05

0.4

03

0.2

0.1

0.0

0 200 400 600 800 1000 1200 1400

Fig. 6. SSIM score of the Generated images during training.

Case 5: We made a slight change to Case 1 by addition-
ally adding 100% of fake images to the training data. This
resulted in accuracy of 92% which is slightly higher than
Case 1.

We can clearly see that in all the cases adding synthetic
images in the training processes boosts the performance of
the classification model.

5 CONCLUSION

S In this work, we showed a mechanism to create and
aggregate synthetic image using the output of various GAN
models. This allows us to learn features from the shared
space of all the latent vectors. We explained each GAN
model and the aggregation process in detail. We also per-
formed style transfer on top of the fake images to add
more internal details of the brain to the fake images to
further increase the resemblance with the real images which
is evident by a sharp increase in PSNR and SSIM scores.
We performed an ablation study to understand the impact
of each part of our workflow. The experimental setup was
explained and we showed that DCGAN with style transfer
resulted in the best performance. Finally, we trained a basic
classifier with a mixture of real and fake data and show
the boost in the performance of the classification model.
Therefore, we quantitatively and qualitatively evaluated the
output of our models and show that the GANs can produce
a good quality MRI image of a brain tumor. This synthetic
data is useful since there is no associated data handling
risks.

REFERENCES

[1] D. Mukherkjee, P. Saha, D. Kaplun, A. Sinitca, and R. Sarkar,
“Brain tumor image generation using an aggregation of
GAN models with style transfer,” Scientific Reports, vol. 12,
no. 1, Jun. 2022. [Online]. Available: https://doi.org/10.1038/
541598-022-12646-y

[2] S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki,
J. S. Kirby, J. B. Freymann, K. Farahani, and C. Davatzikos,
“Advancing the cancer genome atlas glioma MRI collections
with expert segmentation labels and radiomic features,”
Scientific Data, vol. 4, no. 1, Sep. 2017. [Online]. Available:
https://doi.org/10.1038 /sdata.2017.117

(3]

(4]

(5]

6]

(71
(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani,
J. Kirby, Y. Burren, N. Porz, J. Slotboom, R. Wiest, L. Lanczi,
E. Gerstner, M.-A. Weber, T. Arbel, B. B. Avants, N. Ayache,
P. Buendia, D. L. Collins, N. Cordier, J. J. Corso, A. Criminisi,
T. Das, H. Delingette, C. Demiralp, C. R. Durst, M. Dojat,
S. Doyle, J. Festa, E. Forbes, E. Geremia, B. Glocker, P. Golland,
X. Guo, A. Hamamci, K. M. Iftekharuddin, R. Jena, N. M. John,
E. Konukoglu, D. Lashkari,]. A. Mariz, R. Meier, S. Pereira,
D. Precup, S. J. Price, T. R. Raviv, S. M. S. Reza, M. Ryan,
D. Sarikaya, L. Schwartz, H.-C. Shin,]J. Shotton, C. A. Silva,
N. Sousa, N. K. Subbanna, G. Szekely, T. J. Taylor, O. M. Thomas,
N. J. Tustison, G. Unal, E Vasseur, M. Wintermark, D. H. Ye,
L. Zhao, B. Zhao, D. Zikic, M. Prastawa, M. Reyes, and K. V.
Leemput, “The multimodal brain tumor image segmentation
benchmark (BRATS),” IEEE Transactions on Medical Imaging,
vol. 34, no. 10, pp. 1993-2024, Oct. 2015. [Online]. Available:
https://doi.org/10.1109/tmi.2014.2377694

S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi,
R. T. Shinohara, C. Berger, S. M. Ha, M. Rozycki, M. Prastawa,
E. Alberts,]J. Lipkovd, J. B. Freymann, J. S. Kirby, M. Bilello,
H. M. Fathallah-Shaykh, R. Wiest, J. Kirschke, B. Wiestler, R. R.
Colen, A. Kotrotsou, P. LaMontagne, D. S. Marcus, M. Milchenko,
A. Nazeri, M. Weber, A. Mahajan, U. Baid, D. Kwon, M. Agarwal,
M. Alam, A. Albiol, A. Albiol, A. Varghese, T. A. Tuan, T. Arbel,
A. Avery, P. B, S. Banerjee, T. Batchelder, K. N. Batmanghelich,
E. Battistella, M. Bendszus, E. Benson,]. Bernal, G. Biros,
M. Cabezas, S. Chandra, Y. Chang, and et al., “Identifying the
best machine learning algorithms for brain tumor segmentation,
progression assessment, and overall survival prediction in the
BRATS challenge,” CoRR, vol. abs/1811.02629, 2018. [Online].
Available: http://arxiv.org/abs/1811.02629

L J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative
adversarial networks,” 2014. [Online]. Available: https://arxiv.

org/abs/1406.2661

A. Radford, L. Metz, and S. Chintala, “Unsupervised
representation learning with deep convolutional gener-
ative adversarial networks,” 2015. [Online]. Available:

https:/ /arxiv.org/abs/1511.06434

M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” 2017.
[Online]. Available: https:/ /arxiv.org/abs/1701.07875

E. Schonfeld, B. Schiele, and A. Khoreva, “A u-net based
discriminator for generative adversarial networks,” 2020. [Online].
Available: https:/ /arxiv.org/abs/2002.12655

C. Han, H. Hayashi, L. Rundo, R. Araki, W. Shimoda,
S. Muramatsu, Y. Furukawa, G. Mauri, and H. Nakayama,
“GAN-based synthetic brain MR image generation,” in 2018 IEEE
15th International Symposium on Biomedical Imaging (ISBI 2018).
IEEE, Apr. 2018. [Online]. Available: https://doi.org/10.1109/
isbi.2018.8363678

D. Nie, R. Trullo, J. Lian, L. Wang, C. Petitjean, S. Ruan, Q. Wang,
and D. Shen, “Medical image synthesis with deep convolutional
adversarial networks,” IEEE Transactions on Biomedical Engineering,
vol. 65, no. 12, pp. 2720-2730, Dec. 2018. [Online]. Available:
https:/ /doi.org/10.1109/tbme.2018.2814538

H. Emami, M. Dong, S. P. Nejad-Davarani, and C. K. Glide-
Hurst, “Generating synthetic CTs from magnetic resonance
images using generative adversarial networks,” Medical Physics,
vol. 45, no. 8, pp. 3627-3636, Jul. 2018. [Online]. Available:
https:/ /doi.org/10.1002/mp.13047

H.-C. Shin, H. R. Roth, M. Gao, L. Lu, Z. Xu, . Nogues, J. Yao,
D. Mollura, and R. M. Summers, “Deep convolutional neural
networks for computer-aided detection: CNN architectures,
dataset characteristics and transfer learning,” IEEE Transactions on
Medical Imaging, vol. 35, no. 5, pp. 1285-1298, May 2016. [Online].
Available: https://doi.org/10.1109/tmi.2016.2528162

R. C. Petersen, P. S. Aisen, L. A. Beckett, M. C. Donohue, A. C.
Gamst, D. J. Harvey, C. R. Jack, W. J. Jagust, L. M. Shaw, A. W.
Toga, J. Q. Trojanowski, and M. W. Weiner, “Alzheimer's disease
neuroimaging initiative (ADNI): Clinical characterization,”
Neurology, vol. 74, no. 3, pp. 201-209, Dec. 2009. [Online].
Available: https://doi.org/10.1212/wnl.0b013e3181cb3e25

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image
translation with conditional adversarial networks,” 2016. [Online].
Available: https:/ /arxiv.org/abs/1611.07004

S. Sarkar, A. Kumar, S. Chakraborty, S. Aich, J.-S. Sim, and H.-
C. Kim, “A cnn based approach for the detection of brain tumor

[16]

[17]

7

using mri scans,” Test Engineering and Management, vol. 83, p. 16580
— 16586, 06 2020.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” CoRR, vol.
abs/1505.04597, 2015. [Online]. Available: http://arxiv.org/abs/
1505.04597

A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions
to the nonlinear dynamics of learning in deep linear neural net-
works,” arXiv preprint arXiv:1312.6120, 2013.

