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Neural Radiance Fields (NeRF) is a popular method for modeling and rendering 3D scenes with
photorealistic quality. However, NeRF models often struggle to accurately represent shiny
surfaces with high specular reflectance. In this paper, we propose a new method for improving the
representation of specular reflectance in NeRF models. Our method uses a hybrid approach that
combines traditional volume rendering methods with deep learning to accurately capture the
complex reflectance of shiny surfaces. We also introduce a special parameterization of the
environment illumination that allows us to decompose the environment representation from the
NeRF model. We evaluated our method on challenging shiny 3D scenes and compared it to
several baselines. The results showed that our method performed on par with the SOTA baselines
but with much faster training and rendering speed.
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1 INTRODUCTION

Neural Radiance Fields (NeRF) [1] nowadays become a
hot topic in the area of computer vision and graphics. By
combining deep learning and traditional volume rendering
methods, NeRF achieves great improvements in modeling
and reconstructing 3D scenes with photo-realistic rendering
quality. NeRF’s strong ability to represent 3D objects is
favored by a wide range of related 3D vision or graphics
tasks, including novel view synthesis [2], [3], 3D content
creation [4], [5], visual SLAM [6], [7], relighting [8]-[10], etc.
Although NeRF method is able to synthesize novel view
images with promising visual qualities, NeRF models often
fail to accurately represent shiny surfaces with high specular
reflectance. Instead of learning a solid, smooth surface for
those shiny regions, NeRF tends to misinterpret the view-
dependent specular reflectance as emitting light sources un-
der the real surfaces (e.g., Figure ??). This erroneous behav-
ior of NeRF also results in the poor quality of the extracted
surface on the shiny regions, because the fake internal light
sources have to be able to transmit through the internal
volume for synthesizing view-dependent reflectance effects.
Verbin et al. also discussed this issue in their work [11],
please refer to their paper for a more detailed analysis.
There are two lines of work that attempt to address the
problem of learning specularity in NeRF. The first direction
is to make NeRF’s rendering more like a surface rendering
[12]-[14]. Instead of using volume density to represent
3D geometry, the methods in this line use surface-based
implicit geometry representation to ensure higher surface
reconstruction quality for their surface-based rendering. The
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work in the second direction sticks with NeRF’s volume rep-
resentation and puts more effort into the modeling of view-
dependent radiance prediction MLP (e.g., Ref-NeRF [11]).
They thus improve the model’s capability for representing
complex reflectance on the pure object surface.

These abovementioned works are able to improve the
quality of representation for the challenging specular re-
flectance, but they do have limitations. First, these meth-
ods are costly to train. Because their optimization process
involves the normal computation (the gradient from the
estimated density/SDF), the actual training time for these
methods could be even longer than vanilla NeRF [1]. Sec-
ond, the current top-performing NeRF models still encode
the illumination from the global environment in the object
volume. Although their color MLPs do learn the environ-
ment light information, the learned knowledge of the envi-
ronment is entangled with the base color of the object and is
hard to extract or swap. It should note that there are works
that explicitly learn the environment during the training
[10], [15], but these methods have lower rendering quality
compared to the state-of-the-art NeRF models [2], [11]. To
this end, our goal is to propose a more efficient NeRF model
that is able to capture accurate specular reflectance with
special parameterization of the environment illumination in
the NeRF model.

To achieve the aforementioned goals, we make efforts in
the following two aspects. First, to accelerate the training
and rendering, we replace NeRF’s fully implicit MLP rep-
resentation with an implicit-explicit hybrid neural represen-
tation (e.g., instant-NGP [16]). However, directly applying
hybrid neural representations such as instant-NGP will hurt
the continuity of represented surfaces due to their discrete
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Fig. 1. NeRF’s fake emitters under the object surface.

neural features. To address this problem, we leverage the
recent success of SDF-based volume rendering [13], [14] to
predict the SDF with NeRF’s geometry MLP and then con-
vert the SDF to the volume density. To ensure the continuity
of the predicted SDF and smoothness of the represented
surface in a discrete hybrid NeRF model, we propose 2
new SDF regularizations based on SDF’s geometry property.
Second, we propose to add extra neural representation to
encode the environment for learning specular surface color.
Since the environment is unknown during the training and
we can only indirectly observe the environment through the
object reflectance. Thus, we use the surface incoming light
direction (the reflected direction of outgoing radiance w.r.t.
surface normal) to condition our neural environment encod-
ing. Note that Ref-NeRF [11] also uses reflected direction
with special encodings for learning more accurate specular
reflectance, but Ref-NeRF does not have separate parame-
terization of the environment, which limits its capability of
inverse rendering. Our proposed encoding has the potential
to extract the environment for more flexible editability.
To summarize, our contributions are:

e« We propose new regularization terms for hybrid
NeRF models with discrete neural features to learn
accurate and smooth object surfaces.

e We add an additional environment encoding MLP
to better learn the global illumination for rendering
shiny surfaces.

e Our model achieves better rendering quality com-
pared to prior SDF-based volume rendering methods
and with much short training and rendering time.

2 RELATED WORK

Neural rendering and NeRF. Neural rendering is a class
of reconstruction and rendering approaches that use deep
networks to learn complex mappings from captured images
to novel images [17]. The recent progress in neural ren-
dering has shown promising results in various tasks such
as texture mapping [18], surface reconstruction [12], image
generation [19], etc. Neural radiance field (NeRF) [20] is
one representative work that shows how the current state-
of-the-art methods [2], [3], [11] combine volume rendering
and neural network based implicit representation for photo-
realistic novel view synthesis.

NeRF with surface reconstruction. Follow-up methods
that combine surface SDF estimation and neural volume
rendering [13], [14] further improve the quality of sur-
face reconstruction that the original NeRF performs not
well.Both paper uses Eikonal loss to regularize the learned

1. At the point of writing this report, this goal has not been realized,
this is one future work.
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SDE. MonoSDF [21] uses monocular depth estimated by
pretrained model to regularize the learned geometry, which
improves reconstructed surface.

NeRF acceleration with hybrid models. In order to make
NeRF’s training and rendering more efficient, hybrid neural
representations that combine implicit MLP and other dis-
crete spatial representations such as voxel grids [22]-[24],
point cloud [25], [26] and hash table [27] have been proposed
and achieved significant speed boost. By leveraging the
explicit spatial data structure provided by these hybrid
approaches, the ray-marching process can efficiently skip
empty regions and only sample point around the real sur-
face. Besides, since the neural features are discretized over
the spatial data structure, we can only use some shallow or
tiny MLP to achieve fast training speed without much loss
of rendering quality.

3 PRELIMINARIES
3.1 Neural Radiance Field.

NeRF [1] is a new representation method for 3D scenes.
The scene is represented as an implicit function Fg
(x,Vv) — (c,0), whose input is a position x = (z,y, z)
and a direction’ v = (6, ¢) and the output is the emitted
color ¢ = (r,g,b) and volume density o. In practice, the
direction is represented as a 3D unit vector in Cartesian
coordinates, and the function Fg is approximated with an
MLP with parameters ©. For rendering each pixel in the
image, NeRF adapts the classical volume ray casting [28].
The radiance of one pixel is computed by the ray marching
through the pixel with a ray r, sampling N point positions
{x¢ | t = 1,2,---,N}, and accumulating the radiance
(ct, 0¢) at each position as

C(I‘) = Z wtc(xt)

t—1

with w; = exp(— Z U(Xt)5t)(1 - eXp(—U(Xt)(St)) O
j=1
where §; denotes the distance between adjacent sampled
positions along the ray.

3.2 SDF-based neural volume rendering.

Although NeREF is able to synthesize promising novel view
images, the underlying 3D geometry of the reconstructed
scene is not as good as the synthesized images. Recent
works show that implicit surface representation can im-
prove the quality of NeRF’s reconstructed geometry [13],
[14], [29]. Yariv et al. [13] illustrate a concrete mathematical
conversion of volume density o(x) from predicted SDF
dq(x) of the space 2 C R? where the target object locates:

o(x) = %%(—dmx)) @

B is a learnable parameter, and Ug is the cumulative distri-
bution function (CDF) of the Laplace distribution:

Lexp(%) if s <0,
Vg(s) = {2 ’
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1—%exp(—%) if s > 0. ©)

2. The hat symbol ~in this paper only denotes unit directional vector.



Following this parameterization, we get a high-quality
smooth surface from the zero level-set of predicted SDF val-
ues, and surface normal can be computed as the gradient of

the predicted SDF w.r.t. surface point x, i.e., Ny = %.

3.3 Multi-resolution Hash encoding.

Recently, Instant-NGP [16] proposes to represent the whole
3D space with multi-resolution grids stored in a hash table.
Instead of using a fully implicit MLP, Instant-NGP uses
a combination of implicit and explicit neural networks to
represent the 3D scene. For each query point position X,
instant-NGP’s hash encoding outputs its neural feature h{
by interpolating the feature grids at each level [. Then the
features from all resolution levels are concatenated together
as the point’s encoded neural features hy. Then these fea-
tures are fed into a shallow MLP for predicting density
and radiance. Thanks to this efficient structure, Instant-NGP
accelerates the training and rendering stage of NeRF by a
large margin without obvious performance degradation.

4 STUDY ON THE COMBINATION OF HYBRID NERF
AND SDF-BASED VOLUME RENDERING

We start with a naive solution to show why the naive
combination of hybrid NeRF and SDF-based volume ren-
dering is not feasible. In this experiment, we use VolSDF
as the baseline SDF-based volume rendering method. To
combine the hybrid NeRF representation with VolSDF, we
simply replace VoISDF’s fully implicit MLP with Instant-
NGP (VoISDF+NGP) and keep the rest parts unchanged
(including Eikonal loss [30]). We show the comparison of
the surface normal in Figure 2(a). We can see that the surface
normal of the VoISDF+NGP is much worse than the baseline
VoISDFE. To understand the reason, we show the SDF and
compositing weight curves of sampled points along the
camera ray in Figure 2(b). We can see that the SDF curve
of our naive combination has a lot of fluctuations near the
surface. This leads to an unconcentrated compositing weight
curve and thus a bumpy surface.

One possible reason for the poor performance of the
naive combination of hybrid NeRF and SDF-based volume
rendering is that the Eikonal loss used in VoISDF can not
guarantee the smoothness of the hybrid NeRF that has
discrete local neural parameters. The Eikonal loss [30] is
designed to minimize the error between the continuous
SDF value and the distance to the surface, while the hybrid
NeRF representation uses discrete neural features with local
interpolation to approximate the SDF function. Therefore,
directly replacing the fully implicit MLP with Instant-NGP
may not produce good results.

A better solution would be to design new regularization
terms that can better handle the combination of hybrid
NeRF and SDF-based volume rendering. These new regu-
larizations should take into account the discrete nature of
the hybrid NeRF representation and the continuous nature
of the SDF-based volume rendering. By carefully designing
such a loss function, it may be possible to achieve good
results with the combination of hybrid NeRF and SDF-based
volume rendering. We will show our solution in the later
section.

5 METHODOLOGY

This section describes our proposed method in detail. We
first introduce our new SDF regularization terms, then our
design of the hybrid NeRF representation for learning chal-
lenging shiny surfaces.

5.1 SDF Constraints

As analyzed in Section 4, the discretization of implicit
neural representation can cause the loss of continuity of the
represented signals [24], [31], because the predicted signals
now are mainly controlled by the local neural features
instead of a global MLP. To address this issue, we add two
regularization terms to the predicted SDF values based on
SDF’s geometric properties.

The first regularization is to improve the continuity
and consistency of predicted SDF values. Since the signed
distance field defines the local spatial distance information
of 3D positions, we can utilize this property to regularize
the predicted SDF values along the sampled rays. Given
two adjacent sampled points x;, X4 with sufficiently small
distance along the same ray r;, the difference of predicted
SDF values Ad; = dx,,, — dx, can be approximated by the
projection of the relative distance §; = ||x;+1 — X¢|| in the
normal direction Ny, (Fig. 3), which is Ad) ~ (V- Ny, )d:. We
can therefore use the real distance value §; to constrain the
changes of predicted SDF dx with another L2 loss term

La=)_|Ad; — Ady|? @)
t

This regularization term can help our hybrid NeRF model
better learn the geometry of the target object without being
affected by the discrete representation.

The second regularization is to stabilize the SDF predic-
tion for points inside the surface. We can see from Fig. 3
and Fig. 4 that simply adding SDF continuity regulariza-
tion is not enough for accurate SDF prediction. The SDF
curve shown in Fig. 3 still has a lot of fluctuations. We
want our estimated SDF to have a stable decreasing curve
along the ray sampled points when crossing a solid surface.
To achieve this goal, we propose a back-face suppression
regularization that tries to penalize the segments of ray-
sampled SDF curves that have positive slopes and also have
large corresponding compositing weights. We formulate this
regularization as a loss term:

Ad;

Eb = zt: Wy maX(Adt, O) m (5)

where w; is the con;lpositing weight for radiance accumula-
tion. The term gtg‘i%g is the squared sine value of the angle
of slope on the SDF curve. By constraining the SDF value of
the internal points, this regularization term can also prevent
the model from incorrectly learning internal emitters [11]
instead of a solid surface when there are specular highlights
on the surface.

After applying both constraints, the hybrid NeRF model
learns significantly better surface normal compared to the
one without any constraints. The smooth and accurate sur-
face and surface normal are critical for encoding environ-

ment illumination in our next step.
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Fig. 2. The study of the naive combination of hybrid NeRF and SDF-based volume rendering. (b) shows the curves of sampled points along
the camera ray that corresponds to the circled pixel shown on the image patch.
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Fig. 3. Visual illustration of our SDF constraints. Left: illustration of our
SDF approximation with relative point distance. Right: the effect of our
back face suppression.
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Fig. 4. The effect of our proposed SDF constraints. Note that the eval-
uated models are only after 100 epochs of training. No Eikonal loss is
used.

5.2 Model Design

This subsection describes the proposed model for the com-
bination of hybrid NeRF and SDF-based volume rendering.
The overall architecture of the model is shown in Figure 5(a).

The model consists of three main components: a hybrid
NeRF module, a color decomposition module, and an en-
vironment lighting module. The hybrid NeRF module uses
Instant-NGP to encode spatial coordinate input. The color
decomposition module decomposes the color of each point
on the surface into diffuse and specular components. This
allows the model to capture the different lighting effects
of different materials in the scene. The environment light-
ing module uses a relatively large multi-layer perceptron
(MLP) to implicitly learn global illumination from the en-
vironment. This allows the model to produce more realistic
lighting effects in the final rendering.

Since our objective is to render shiny surfaces. The
decomposition of color can help the model better learn
the specular reflectance, and such decomposition is very
common in the modern rendering pipeline. We learn that
specular reflectance is the result of interaction between the

surrounding environment and surface. Instead of letting the
spatial volume feature encode all the reflectance informa-
tion, our additionally added environment MLP can bet-
ter learn the globally consistent environment illumination.
These learn environment encodings are then concatenated
with other volume features and properties to finally pre-
dict the specular color. Given a mirror-like surface (ie.,
directional BRDF), the outgoing radiance from the view
direction is mainly determined by its reflected direction
w.r.t. the surface normal. Therefore, we assume using the
reflected view direction with positional encoding [1] can
well condition our environment encoding MLP. Figure 5(b)
shows an example of decomposed rendering components.
Our decomposed module accurately learns different types
of color and jointly enable the high-quality shiny object
surface.

5.3 Training

The training process is essentially the same as other NeRF
methods, but with the above regularization terms. The full
loss function is defined as

L= L:colm" + AdfC'd + >\b£b (6)

where Lcoior is an L1 loss between the ground truth and
the rendered images, A4, A\, are loss hyperparameters. In
order to feed stable normal vectors to the specular MLP
branch and to keep the specular MLP from being impacted
by diffuse color, we exclusively train the diffuse MLP branch
for a few training steps in the beginning, then jointly train
both diffuse and specular branches.

6 EVALUATION

We evaluate our method on challenging shiny 3D objects.
We make comparisons with prior works based on the qual-
ity of view synthesis and surface normal.

Datasets. We use 3 shiny scenes from two datasets for
evaluation: 2 NeRF’s Blender synthetic scenes [20] (Ficus
and Materials) and 1 shiny blender synthetic scene from
Ref-NeRF [11].

Baselines. We choose vanilla Instant-NGP? [16], VolSDF*
[13], and Ref-NeRF° [26] as baselines. We train or use pre-
trained checkpoints to get the results of the baseline.

3. https:/ / github.com/ashawkey /torch-ngp
4. https:/ / github.com /nexuslrf/Accel-RF
5. https:/ / github.com/kakaobrain/NeRF-Factory /
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Fig. 5. Model overview. We use an Instant-NGP like hybrid model with SDF-based volume density (e.g., VoISDF). Our model decomposes color
with diffuse and specular color with two shallow MLP branches. Using a relatively large env. MLP with reflected direction as the only input to implicitly

learn global illumination from the environment.

Implementation. Our implementation is based on pytorch-
ngp°. For a fair comparison, we do add a very MLP model
in our model shown in Fig. 5(a). The size of diffuse and
specular MLP is smaller than Instant-NGP’s color MLP. Our
env. MLP is only a 4-layer MLP with 128 hidden units per
layer. Same as the vanilla Instant-NGP, we train our model
for 2000 epochs to report the results.

Evaluated Metrics. We use PSNR, SSIM, and LPIPS to
measure the quality of the novel view synthesis. We use
MAE (mean angular error) to measure the quality of the
estimated surface normal.

6.1 Results Comparison

The results of the comparison are shown in Table 1 and
Figure 6. Our method has performance on par with the
baselines in terms of PSNR, SSIM, and LPIPS, indicating that
our method can produce high-quality synthesized views of
shiny objects. Our method also performs well in terms of
MAE, achieving the lowest error on the Ficus and Materials
scenes.

By jointly comparing the estimated normal and final
rendered image. We can see our method does learn the
smooth surface and accurate illumination from the envi-
ronment. Compared to state-of-the-art method Ref-NeRF,
our still have relatively lower rendering quality. For exam-
ple, our result still lacks the high-frequency detail on the
metallic ball. Since our environment MLP cannot model
the indirect illumination caused by the reflectance from
the neighboring objects. Our rendered results do not well
preserve the reflectance from the neighbor balls in the
materials example. However, this results also indicate that
our environment does learn the accurate global illumination
from the environment. Another problem of our method is
that our estimated surfaces are over-smoothed, this might
be related to our relatively large loss weights on the two SDF
regularizations terms. We can later improve it by gradually
decreasing the loss weights during the training to learn
more accurate surface detail.

6. https:/ / github.com/ashawkey /torch-ngp

7 CONCLUSION

In this paper, we proposed a method that combines hybrid
NeRF and SDF-based volume rendering for rendering accu-
rate shiny surfaces. Our method uses Instant-NGP to encode
spatial features, and decomposes the color into diffuse and
specular components. This allows the model to capture
the different lighting effects of different materials in the
scene. We also use a MLP model to implicitly learn global
illumination from the environment, allowing the model to
produce realistic lighting effects in the final rendering.

We evaluated our method on challenging shiny 3D
objects and compared it to several baselines. The results
showed that our method performed on par with the base-
lines in terms of PSNR, SSIM, and LPIPS, indicating that
our method can produce high-quality synthesized views of
shiny objects. Our method also performed well in terms of
MAE, achieving the lowest error on the Ficus and Materials
datasets. Overall, the results demonstrate the effectiveness
of our method for the combination of hybrid NeRF and
SDF-based volume rendering. However, our method still
has some limitations, such as over-smoothing of the esti-
mated surfaces and lack of high-frequency detail in the final
rendering. Future work can focus on improving these limita-
tions and further exploring the combination of hybrid NeRF
and SDF-based volume rendering, such as extracting the
environment image from our environment encoding MLP,
modeling indirect illumination, and image-based relighting.
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