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Abstract—Texture classification plays an essential role in different fields such as object recognition. One of the most widely used
statistical methods is Local Binary Pattern (LBP). A large number of variants have been proposed, achieving competitive results in
addition to computational efficiency. This study presents a new variant, Attractive-Repulsive Strength-Based LBP (ARSBLBP). Across
four datasets with variations in angles, scales, and viewpoints, ARSBLBP achieves the best performance among eight LBP variants.

1 INTRODUCTION

N computational image processing, a texture can be
Iviewed as a function defining the spatial variation of
pixels’ intensity, and a texture image is created when such
variation follows a repeated pattern [1]. Texture classifica-
tion plays an important role in various areas such as object
recognition and defect detection.

Despite the increasing popularity of convolutional neu-
ral networks (CNNs), traditional methods are still prevalent,
especially with small training sets and limited computa-
tional resources. One of the most widely used methods for
extracting textural features is Local Binary Pattern (LBP).
LBP was first proposed by Ojala et al. in [2] in 1996. Since
then, it becomes the foundation of many state-of-the-art
methods. LBP and its variants are not only used for texture
classification, but also in many other fields including face
recognition, iris recognition, and medical image analysis.

Hence, this study evaluates and compares a number of
classic and novel LBP-based methods, using texture datasets
of different characteristics. More importantly, in section
3.9, this study presents a new variant named Attractive-
Repulsive Strength-Based Local Binary Pattern (ARSBLBP),
achieving significantly better performance and computa-
tional costs.

2 RELATED WORK

The foundational LBP in [2] is a gray-scale invariant
method. For each local image patch, it binarizes pixel in-
tensities by comparing them against the central pixel. The
distribution of the resultant binary encoding then becomes
a feature descriptor of each texture. However, LBP is not
rotation-invariant. To address this major drawback, in [3],
Ojala et el. proposed rotation invariant LBP (LBP") and
LBP"*“? for the detection of uniform pattern.

Another issue of the basic LBP is its sensitivity to noise.
Extending upon the binary encoding, a descriptor known
as Local Ternary Pattern (LTP) was proposed in [4] to
increase the robustness. In the same year, Local Directional
Pattern (LDP), which has more discriminant power, was
proposed for face recognition in [5]. In a comparative study
[6] (2017), the Median Robust Extended Local Binary Pattern
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(MRELBP) proposed in [7] outperforms 32 other variants
and 8 CNN-based methods.

Since then, more LBP variants have been proposed and
have demonstrated both effectiveness and computational
efficiency. For instance, inspired by LTP and LDP, a method
known as Local Directional Ternary Pattern (LDTP) was
proposed in [8] (2018). Additionally, in [9] (2019), El-merabet
et al. proposed Attractive-and-Repulsive Center-Symmetric
Local Binary Patterns (ARCSLBP). ARCSLBP is inspired by
CSLBP proposed in [10]. It achieves top performance on 13
datasets when compared against 76 other methods, includ-
ing 3 deep learning feature extraction methods. Other novel
LBP-related texture classification methods include Robust
Adaptive Median Binary Pattern (RAMBP) in [11] (2019)
and Local Grouped Order and Non-Local Binary Pattern
(LGONBP) in [12] (2020). Novel LBP-based methods target-
ing facial analysis have also been proposed very recently,
such as in [13] (2021) and [14] (2021).

3 MEeTHODS

3.1 Preliminaries

For each pixel at position (i,7) in the input image, we
consider the ordered neighbourhood N as defined by Eq.
1. There are eight possible starting positions for py and two
possible directions for index increments. This study uses, by
default, clockwise rotation starting from the top-left pixel.
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The first step of LBP variants is to create an encoding
for each 3 x 3 patch. For this purpose, we define two
step functions v, (Eq. 2) and %, (Eq. 3) which are used
throughout the paper. For brevity, v is equivalent to v,—¢.
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After encoding ./\f(i, j), the second step is to convert
the encoded patch into a single value by a weighted sum.



The result is taken as the value at the corresponding pixel
position (¢, j) of the output image.

Lastly, the output image is converted to a feature vector
to prepare for classification. The convention is to use the his-
togram distribution of the values. For brevity, we use hist;lc
to denote the d-dimensional feature vector constructed by
applying an operator f to each image pixel and counting
the number of occurrences of values in {0, ...,d — 1}.

3.2 LBP

Local Binary Pattern (LBP) proposed by Ojala et el. in [2]
aims to characterize the local spatial pattern and contrast in
grayscale images. The corresponding value at (7, j) in the
LBP image is then computed using Eq. 4.

7

LBP(; ;) = Y v(pk,pe) x 2* (4)
k=0

where p;, and p. are as defined by Eq. 1. Fig. 1 illustrates a

simple example of computing LBP values.
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Fig. 1. An example of LBP operator. For each pixel, its eight neighbours
(i) are converted into binary code (ii) by comparing their intensities with
the central pixel intensity. The code is multiplied by the weight (iii),
resulting in a final value of 70 = 2 + 4 + 64.

The LBP weight vector has its components defined as
powers of 2 where the exponent corresponds to the pixel
location. There are 256 possible values, ranging from 0 to
255. Thus, for each texture image, we can extract a feature
vector hist s. The feature vector is gray-level invariant and
thus robust to illumination change.

3.3 LBP"

Ojala et al. later introduced the rotation-invariant LBP"* in
[3]. As mentioned in section 3.1, there are eight possible
starting positions for ordering the neighbours. Each differ-
ent definition results in a different LBP value. Hence, LBP"?
takes the minimum over the eight possible LBP values. The
resulting feature vector is similarly 256-dimensional.

3.4 LTP

To improve noise robustness, Local Ternary Pattern (LTP)
[4] proposes to use 7y, and 7, with 7 # 0. For each patch at
(4,7), LTP constructs two values using Eq. 5 and 6.

LTP upper ©,7) Z Yr pk,pc (5)
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LTPlower(i,j) = Z Yr (pkvpc) X 2k (6)
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The LTP feature is hist?2 := [hist22S hist?$ .
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3.5 LDP

To encode a neighbour at position k in the patch (¢, j), Local
Directional Pattern (LDP) [5] replaces 7(pk,p.) by a more
sophisticated edge response function ER* as defined by Eq.
7 where M}, is a mask that rotates based on the index k.
Eq. 8 gives definitions of M{p and M{'p, and the masks for
other £ values are rotated accordingly.
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After getting the edge responses, LDP assigns 1 to the
neighbours with top-m ER and 0 to all others. The LDP
value is then computed using the same weight vector as
LBP (Eq. 9), resulting in the feature vector hist;{Dp.

7
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3.6 LDTP

Local Directional Ternary Pattern (LDTP) [8] takes a similar
approach as LDP of computing edge responses. However,
in place of the eight M, LDTP uses the eight Frei-Chen
masks which are defined in detail by Fig. 6 in [8]. In
addition, it computes a response ER. for p. using a second-
derivative Gaussian mask defined by Eq. 10.
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Similar to LTP, LDTP computes two values (Eq. 11 and 12).
7
LDTPypper(i,j) = 9 7(ERF, ER®) x 2F +~(ER®,0) x 2% (11)
k=0

7
LDTPiower(i,j) = Y 7(ER®, ER®) x 2¥ +3(ER°,0) x 2° (12)
k=0
The LDTP feature is hist{va® := [histill)?n)upper histilleTPlnwﬂ].
3.7 CSLBP

Center-Symmetric LBP [10] provides lower-dimensional fea-
ture vectors by pairing up the eight neighbours (Eq. 13).

3

= Yr(Pr, Prta) x 2F
k=0

CSLBP; ;) 13)

Fig. 2 shows a simple example. This results in hist($; gp.
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Fig. 2. An example of CSLBP.—>. The eight neighbours are paired
up and the center pixel is not considered (i). The code is created by
comparison within each pair (ii) and is multiplied by the weight (iii).



3.8 ARCSLBP

Based on CSLBP, Attractive-Repulsive CSLBP (ARCSLBP)
[9] was proposed to characterize attractive and repulsive
micro-structures. In particular, ARCSLBP also pairs up the
eight neighbours but includes the center pixel in value com-
parisons. The attractive (A) and repulsive (R) components
are defined by Eq. 14 and 15, respectively.

3
A gy = D (Prspe) X Y(Prya,pe) x 28 (14)
k=0
3
R ;) = Z’_Y(pk,Pc) X ¥(PrtasPe) % 2F (15)
k=0

In brief, a pair has an attractive (repulsive) structure iff both
values are greater (smaller) than or equal to the center value.

A major difference between ARCSLBP and the other
variants is that it further compares the center pixel with
three different statistics: the mean intensity of the image
(Imean), the mean intensity of the patch (pPmean), and the me-
dian intensity of the patch (Pmedian). The complete attractive
and repulsive operators are defined by Eq. 16 and 17.
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Fig. 3 provides a simple example of the ARCSLBP. The
g o P g 1%

feature vector is histige gp = [hist yoe; gp histiee; gp)-
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Fig. 3. An example of ARCSLBP. The attractive micro-structure checks if
both values in each pair are at least 5 and the repulsive micro-structure
checks if both are at most 5 (i). The center pixel is compared with
the global mean (Imean), the local mean (pmean) and the local median
(pmedian) (ii)- The attractive (A) and the repulsive (R) vectors are obtained
by concatenating the two sets of results. The two ARCSLBP values are
dot products of the two codes and the weight.

3.9 Proposed Method: ARSBLBP

Inspired by ARCSLBP, this paper proposes Attractive-
Repulsive Strength-Based Local Binary Pattern (ARSBLBP).
Specifically, ARSBLBP aims to characterize attractive and
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repulsive micro-structures in a fully rotation-invariant and
also more space-efficient way.

While pairing up the neighbours admits some extent of
rotation invariance, multiplying the binary codes by differ-
ent weights eliminates this desired property. In addition, a
common shortcoming of the LBP variants is the difficulty of
choosing a proper and interpretable ordering of neighbours.
Motivated by the above reasons, ARSCLBP measures the
overall strength of the local micro-structures by assigning
equal weights to the eight comparisons. The 3 x 3 field
is the most attractive (repulsive) iff the center pixel is a
local minimum (maximum). Summing over the neighbours
results in a range of 0 to 8. To increase the compactness of
the encoding, we decrease the value by 1. This is formally
defined by Eq. 18 and 19. Each overall strength measure
takes on the range of 0 to 7, which is only 3 bits.
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Astrength(i,j) = mmax (Ov Z ’Y(pkvpc) - 1)
k=0

(18)

7
Rstrength(i,j) = mmax (07 Z :Y(pkapc) - 1) (19)
k=0

In addition, we also include comparisons between the
center pixel and some statistics. In contrast to ARCSLBP
which uses both the mean and median of the patch, we
only need to consider the local mean. This is because the
comparison with the median is already implicitly encoded
in the first summation term. Specifically, we know that
¥ (Imedian, Pe) = 1 if and only if ZZ:O ~v(pk,pe) > 4. Hence,
we include one comparison with the global mean at the 4"
bit and one with the local mean at the 5 bit (Eq. 20 and 21).
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Combining the two, we obtain a lower-dimensional feature
vector histSieppr = [hist32gpp histdag np]. Fig. 4 illus-
trates the proposed method by an example that can be used
to compare and contrast with Fig. 3.
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Fig. 4. An example of ARSBLBP. Each neighbour is compared with the
center pixel (i) and the center pixel is also compared with the global
mean and the local mean (ii). The strength is 3-1=2 (or 010 in binary)
for the attractive structure and 5-1=4 (or 100 in binary) for the repulsive.



TABLE 1
The classification accuracy (%) of the eight LBP variants on the four datasets with different characteristics, numbers of images per class (N;.),
and numbers of classes (N.). The best score(s) in each row are highlighted in bold .

Characteristics Nijjc N. LBP LBP" LTP LDP LDTP  CSLBP ARCSLBP ARSBLBP
usC Standard 16 13 99.0 93.3 100.0 93.3 100.0 94.2 100.0 100.0
USC rot. | 7 rotation angles per class 7 13 47.8 95.7 45.7 19.6 58.7 174 84.8 100.0
Brodatz | Large intra-class variation 25 112 87.9 83.4 88.1 75.1 91.4 721 92.3 90.1
UIuC Rotation, scaling, viewpoints 40 25 52.8 51.2 60.0 36.8 58.8 42.0 69.0 77.0
Average | — — — 719 80.9 734 56.2 772 56.4 86.5 91.8
4 EVALUATION 4.1.4 UIUC

4.1 Datasets

To evaluate the methods, we use four datasets with different
characteristics, as summarized in Table 1. Each dataset is
partitioned into train and test sets of equal sizes.

4.1.1 USC-SIPI

The USC-SIPI (University of Southern California — Signal
and Image Processing Institute) dataset includes 13 512x 512
images, one for each class. We split each into 16 smaller ones
of 128 x 128 and place 8 of them in the test set. This standard
dataset, as shown in Fig. 5, serves as a basic evaluation.

Fig. 5. A 128 x 128 sample for each of the 13 classes in the USC dataset.

4.1.2 USC-SIPI Rotated

To check rotation invariance, the USC Rotated dataset in-
cludes 7 different angles for each of its 13 classes, for a total
of 91 images of size 512 x 512. Fig. 6 shows the seven angles.

Fig. 6. Seven weave images at {0, 30, 60, 90, 120, 150, 200} degrees.

4.1.3 Brodatz

The Brodatz dataset consists of 112 640 x 640 images, one
per class. We split each into 25 images of 128 x 128. Fig. 7
shows its significantly more intra-class variations and inter-
class similarity, which makes it more challenging.

Fig. 7. Sample images of size 640 x 640 in the Brodatz dataset.

The University of Illinois Urbana Champaign (UIUC) tex-
ture dataset consists of 1000 256 x 256 images, divided
into 25 classes with 40 images for each. This is the most
challenging dataset of the four, with significant variations
in scales, angles, and viewpoints. As shown in Fig. 8, the
patterns between different classes may also be very similar.

Fig. 8. Four sample images for 14 random classes in the UIUC dataset.

4.2 Classifier

A classifier is required to associate the features with the class
labels. Since the focus of this study is the extracted features,
we use a simple 1-Nearest-Neighbour classifier.

4.3 Hyperparameters

The only hyperparameters involved are 7 for LTP and
CSLBP and k for LDP. Following the suggestions in the
published papers, we set 7 = 2 and k = 3.

5 EXPERIMENTAL RESULTS

Table 1 summarizes the classification accuracy for each
dataset-method combination. Overall, the proposed ARS-
BLBP method achieves the best performance for three of
the four datasets and also the best on average.

In detail, ARSBLBP achieves 100% accuracy for both the
standard USC and the USC Rotated datasets. In comparison,
none of the other LBP variants are able to perform very well
on both of the datasets. For instance, LBP"? achieves the
second-best performance on the rotational dataset but the
worst performance on the standard USC dataset.

As for the more challenging Brodatz dataset, the ARC-
SLBP variant shows the best performance, followed by
LDTP and ARSBLBP. More importantly, for the UIUC
dataset with a variety of large variations, the proposed
ARSBLBP also performs the best, achieving 8% higher than
the second best which is ARCSLBP. Overall, it is the only
method with an average classification accuracy above 90%.

In addition, we also report the costs of the experiments.
Fig. 9 compares the average testing performance with the
time and space costs of different LBP variants.
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Fig. 9. The trade-off between costs and performance. The time cost of
each method is relative to that of LBP.

6 DiscussION

Firstly, based on Table 1, the proposed ARSBLBP is the
only variant achieving 100% classification scores on both
USC standard and rotated datasets. None of the other
LBP variants proves to fully rotation-invariant, including
LBP"". LBP"™ is only able to consider the eight different
angles corresponding to the different starting points. LBP"*
also makes compromise on regular datasets, as suggested
by its least competitive performance on the USC dataset.
ARCSLBP is moderately robust to rotations with a score
of 84.8%. Comparatively, the proposed method effectively
resolves rotational issues while making no compromise to
its discriminant power on rotation-free datasets.

As expected, the classification scores for the most chal-
lenging UIUC dataset are significantly lower than all others.
Comparing across the methods, the proposed ARSBLBP
achieves 8% better than the second best and 17% than the
third best. One possible reason is that in a situation with
large variations, it is more beneficial to capture coarser
patterns. In particular, the better-performing ARCSLBP and
ARSBLBP both place more emphasis (i.e. higher weights)
on the comparisons between the central pixel and the
statistics. These more general and more robust comparisons
contribute the most to the resulting values.

For complimentary analysis, Fig. 10 illustrates some
qualitative results from LBP, ARCSLBP, and ARSBLBP.

Input LBP

Acsiap Asprap Rsprae

Fig. 10. The image outputs from LBP, ARCSLBP, and ARSBLBP for two
sample inputs of herringbone weave (a) and plastic bubbles (b).

In the first case of plastic bubbles, applying the LBP
operator is able to capture all edges of the input image.

5

Meanwhile, it also captures many fine details in between
the main edges. The magnitudes of the LBP values in the
darker gap regions and the lighter regions cover a similar
range. In contrast, the separated outputs from ARCSLBP
and ARSBLBP clearly illustrate different effects depending
on the types of region. The attractive structure assigns larger
values to the dark regions whereas the repulsive structure
assigns larger values to the brighter regions. This effect is
attributable to the comparison with the image mean. The
effect is more obvious in the ARSBLBP outputs. This is
because the comparison with the image mean is at the
second-highest bit for ARSBLBP and the third-highest bit
for ARCSLBP.

The second input of herringbone weave has more reg-
ular and repeated patterns. This case illustrates how LBP
responds to rotations. In particular, we observe different
LBP patterns between the lines going downwards and the
lines going upwards. The linear structure is preserved in the
LBP image for the former but not the latter. In comparison,
the proposed ARSBLBP preserves the linear structure for
both directions while ARCSLBP preserves the structure for
neither.

We recognize that ARSBLBP may not always work.
For instance, Fig. 11 shows the responses of ARSBLBP
in challenging scenarios with large inter-class similarities
and intra-class variations. It is arguably difficult to classify
these images correctly even by visual inspection. ARSBLBP
performs very well in one case and fails in the other.
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Fig. 11. Some feature vectors constructed by ARSBLBP in cases where
there is a great inter-class similarity (between the top and the middle
inputs) and a great intra-class variation (between the middle and the
bottom inputs). The left is a successful example where the query vector
is closer to the one of the same class. The right is a failed example
where the query vector is closer to the one of the different class.

Lastly, based on Fig. 9, while showing the best perfor-
mance, the proposed method is also very efficient in terms
of its cost in space. In terms of computation times, it takes
longer to construct ARSBLBP feature vectors than LBP, LTP,
and CSLBP. Nonetheless, in comparison to the second and
the third best-performing methods, ARSBLBP has much
lower computational costs in both time and space, achieving
a significantly better trade-off between performance and
costs.



7 CONCLUSION

In conclusion, this paper proposes Attractive-Repulsive
Strength-Based Local Binary Pattern (ARSBLBP) for textural
feature extraction and classification.

The method has been evaluated and compared with
seven other classic and novel variants of Local Binary
Pattern. Based on four datasets of various characteristics,
ARSBLBP achieves the best average classification score on
the testing sets. It proves to be fully rotation-invariant and
has a comparatively high tolerance level for different forms
of variations.

Additionally, its computational time cost is below-
average. Its feature vector is only 64-dimensional, which
is significantly more space-efficient than the other variants
with at least 256-dimensional features.

To further improve the performance, possible future di-
rections include the combination of statistical methods and
deep learning methods. For instance, a number of studies
such as [15] and [16] have proposed to use LBP images as
inputs to CNNs for the purpose of face recognition.

Lastly, we would like to note that in situations with
limited training data, traditional methods may be necessary
and helpful. Despite the fast development of CNNs, the
LBP operator and its variants are still relevant today and
can provide promising results with minimal computational
resources.

8 LIMITATIONS

Limitations exist in the evaluation of the studied methods.
For instance, each image in all four datasets consists of a
single texture. In practice, the texture segmentation stage
may not be as perfect. Behaviours with combinational, noisy
texture images should be investigated. It is possible to
draw different conclusions about the methods with different
datasets.

In addition, using a 1-Nearest-Neighbour classifier may
not necessarily be the best option. The impacts of different
classifiers on the methods can also be studied in the future.
Also, for consistency across the methods, we did not create
validation sets for hyperparameter tuning. Instead, the hy-
perparameters were set following examples in the original
papers.

Meanwhile, we recognize that limitations exist in the
proposed ARSBLBP method. Despite outperforming the
seven other variants, its classification score on the most
challenging UIUC dataset is still below 80%. In this case,
it may be beneficial to introduce some deep learning tech-
niques. Alternatively, image pre-processing techniques such
as perspective correction could be applied prior to LBP
operators.
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