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Abstract—Image denoising has been a popular topic in the field of image processing, and efforts have been made to produce
higher-quality denoised images. With more generative models invented in the past decades, it could also be possible to denoise
images using denoising models. This paper experiments with the denoising diffusion probabilistic model (DDPM) [1] in image
denoising. The performance of the models is measured by the quality of the denoised image and will be compared with other models.
PSNR, PSNR-HVS-M (PHM) [2], and structural similarity (SSIM) [3] are used as metrics to measure the quality of the denoised
images. We also found a mapping from the noise levels to the step number of the denoising stage to produce the best result. To further
explore the performance of these models, we tested DDPM on images with different levels of Gaussian and Poison noises and the

ones that are out of the distribution of the training set.

Index Terms—Computational Photography, Denoising, Generative Models, Denoising Diffusion Probabilistic Models

1 INTRODUCTION

OISES in images are annoying, and that makes de-
Nnoising a popular topic for image processing. The
importance and popularity of denoising could be reflected
in the diversity of denoising models. These models propose
methods from very different perspectives. Some models
use varied types of filters to erase the noises, while some
other models adopt a deep learning strategy and use neural
networks to achieve the same goal. Aside from the models
that process the original images, there are also models that
generate images from scratch to approximate the denoised
image (e.g., the deep image prior [4]). If a model generates
images by removing noises, then how well does this gener-
ative model perform on denoising?

The denoising diffusion probabilistic model (DDPM)
[1], [5] is a generative model that creates high-resolution
images through denoising. DDPM is trained by continu-
ously adding Gaussian-distributed noises to images until
the images become isotropic-like noises and then learning
to find the priors of the noisy images. When pure Gaussian-
distributed noises are passed to a trained DDPM model, the
model will continuously take denoising steps and finally
generate a clear image. The intermediate result of each
denoising step will just be an image with different levels
of Gaussian noises [1].

Since DDPM could eventually generate a clear result
from these noisy intermediate images, it is intuitive to
believe that DDPM will also perform denoising well on
the noisy images injected into the middle of the denoising
stage [6]. This work adopts such a method and explores the
performance of DDPM in removing different levels of noise
from images. The performance is measured using PSNR,
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PSNR-HVS-M (PHM) [2], and structural similarity (SSIM).

We show that DDPM could generate better results than
bilateral filters [7] and the multi-stage progressive image
restoration model (MPRNet) [8] on in-distribution images.
Results also indicate that Poisson noises added on top of
Gaussian noises could interfere with and lower the perfor-
mance of DDPM. Meanwhile, we also show that DDPM'’s
good performance in this scenario cannot be generalized to
out-of-distribution images when the noise level is high.

Fig. 1: Noisy church image (retrieved from Google Map)
denoised using pretrained DDPM model [9] and MPRNet
(8].
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2 RELATED WORK

Classical models mitigate noises by consulting neighbour-
ing areas or similar areas of the image to estimate the real
value of the pixels, such as the bilateral filter [7] and the
non-local means filter [10]. While these filters are efficient
in denoising, the processed image could suffer from blurry
artifacts as the filters discourage sharp edges.

As deep learning went viral, neural networks are also
applied to the topic of denoising. For instance, Zhang et al.
proposed DnCNN model [11], which uses a neural network
and batch normalization to fit the noises and subtract them
from the noisy image. Still, DnCNN might also leave notice-
able artifacts in the image. This problem could somehow be
mitigated by the deep image prior model as it could achieve
super-resolution for the image and therefore keep the image
details [4]. However, the deep image prior model relies on
an early stopping for the Unet fitting process, which means
a deviated estimation of the number of iterations could lead
to either removing image details or leaving noises in the
image.

The denoising diffusion restoration models (DDRM) [6]
adopt DDPM as the denoising tool in image restoration
and could generate outstanding outputs for general linear
inverse problems. This work uses DDPM in a similar way as
DDRM and tests how well DDPM denoises images without
relying on other features of DDRM (e.g., Memory Efficient
SVD). While DDRM is claimed to be able to handle out-of-
distribution images if it utilizes a DDPM model trained on
a multi-modal dataset, it remains unclear if DDPM could
perform as well if it were trained on a single class of
images. Meanwhile, since DDPM is trained with Gaussian
noises, previous works did not evaluate the model when the
image is also interfered with by Poisson noises. We test the
performance of DDPM in these scenarios to provide more
evaluations on the generalizability of DDPM in denoising.

Fig. 2: DDRM uses a pretrained DDPM model. Figure by [6]
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3 EXPERIMENT

To accommodate the limited computing resources available
for this work, we use the pretrained DDPM model [9] that is
also used by DDRM. This model was previously trained on
the LSUN church [12] datasets. It takes in an image array X, a
current step ¢ at which the denoising process starts, and the
total number of denoising steps ns. Each step of denoising
will decrement ¢ by 1, and the denoising process will stop if
t reaches 0 or all the n, steps are executed. Since the choices
of parameters could significantly influence the quality of
the results, it is crucial to find the appropriate parameters to
generate the most desired output.

In order to find the optimal starting steps to denoise
images of different noise levels, we will first calculate the
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closed form of the mapping from the noise variance to the
optimal starting step. To verify this mapping, we fine-tune
the optimal ¢ value for each noise level and use the inter-
polation of these results to match the theoretical mapping.
We prepare pairs of clean images x and noisy images x. We
obtained a small batch of images of churches from Google
Maps and cropped them to the size of 256 x 256 pixels.
Gaussian noises with ¢ = 0.05,0.1,0.2,0.4 are then added
to these images to generate noisy images. For each level of
noise, we automatically tune the model by finding

arg max Z PSNR-HVS-M(x;, DDPM(t, ns, X;))

t,ng i—1

where n is the number of clean images. After parameters
are tuned according to PSNR-HVS-M, we manually fine-
tune the model around the previous results and find the
final choice of parameters based on both PSNR-HVS-M and
SSIM [3]. PSNR is not used in tuning as it is found to be
biased toward blurry images, which might cause the tuning
process to overestimate the step number.

After generating the denoised results using the DDPM
with the optimal parameters, we compare these images with
the ones that are processed by a fine-tuned bilateral filter
and a pretrained MPRNet [8] in terms of PSNR, PSNR-
HVS-M, and SSIM. The results of this comparison could
offer insight into whether DDPM performs denoising on
Gaussian noises as satisfactory as other models that are
designed for denoising. To evaluate if DDPM could denoise
more complex noises, we also use DDPM to denoise images
with Gaussian-Poisson noises. We also use DDPM to de-
noise images of bridges and owls with Gaussian noises and
check if DDPM could properly denoise out-of-distribution
images when it is trained on a single class of images.

4 EXPERIMENT RESULT AND ANALYSIS
4.1 Optimal Denoising Step Number

When the DDPM model is trained, the variance of the noise
added to the image is linear to the diffusion step number ¢.
The variance is expressed as

0.0199

Bt = 509

for the pretrained model we use [1] [9]. Considering that
each diffusion step also dilutes the image from the pre-
vious step by /1 — f3;, the noises of all the steps are not
accumulated by simple addition. The noise variance at each
diffusion step could be calculated using the function [1] [9]

% (t — 1) +0.0001

Since denoising for DDPM is the reverse process of
diffusion, we expect the noise variance to be the same
for the same step t of diffusion and denoising. The same
function f also maps the denoising step number to the
corresponding noise variance. Therefore, the inverse of this
function, namely f~!, gives the step number for each noise
variance by

t=f""(o?)



After the theoretical analysis, we also adopted the em-
pirical strategy to tune the parameters. Table 1 describes the
tuning result based on the previously described strategy. It
confirms our intuition that optimal ¢ is positively correlated
to the noise level and the resulting quality peaks when n is
the largest possible value.

TABLE 1: Optimal ¢ and n, for denoising Gaussian noises.

- [[o=005]o=01]0=02]c=04
t 15 33 69 120
ns 15 33 69 120

The interpolation based on the tuned parameters verifies
the previously calculated function f~!. Figure 3 shows that
when o is within the range of (0.05,0.4), the curve of
the interpolation is almost overlapped with the curve of
/1. Notice that we only tuned the model in the range of
(0.05,0.4) as this work is regarding image denoising instead
of image generation, and higher noise levels could cover the
semantics of the image. Meanwhile, as the noisy images are
clipped so that the pixel values fit in the range of (0, 1), the
actual noise variance of the noisy image will be significantly
lower than the amount added to the clean image when the
noise variance is very high.

Fig. 3: Comparison of Theoretical Mapping and Interpola-
tion
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4.2 Quantitative Analysis

With the optimal parameters, DDPM could generate de-
noised results with very high SSIM and decent PSNR-HVS-
M with respect to the ground truth (Table 2 and Table 3).

In order to better evaluate if DDPM is performing de-
noising as well as other denoising models, we compared
DDPM with a fine-tuned bilateral filter and MPRNet on
two batches of in-distribution noisy images (adapted on
images retrieved from Google Maps) that are not seen by
DDPM during training or tuning. The first batch of images is
generated by adding Gaussian noises to images with high-
frequency areas (e.g., trees and bricks), while the second
batch is created from images with lower frequency (e.g.,
white walls and sky). The frequencies of the images are
also measured in terms of the power spectrum. To calculate
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the power spectrum, we first converted the image into the
Fourier domain using discrete Fourier Transformation, then
we calculated the power of the amplitude of each frequency.
The power spectrum shows that the images in the first batch
have higher power at high frequencies (Figure 4).

Fig. 4: Power spectrum of the images with and without high-
frequency component (HFC).
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When the noise level is very low, DDPM is slightly out-
performed by bilateral filters. However, when the noise level
is not low (o > 0.1), DDPM significantly outperforms both
bilateral filters and MPRNet on denoising images with high-
frequency components in terms of both PSNR-HVS-M and
SSIM (Table 2). That said, the images denoised by MPRNet
have PSNR-HVS-M values that are even lower than the
noisy input, which indicates that the images denoised by
MPRNet could be undesired in certain sense. The case is
different for low-frequency images. While these noisy im-
ages have lower PSNR-HVS-M and SSIM values than their
noisy counterparts with higher frequencies, they end up
with higher measurements after being denoised by DDPM
or MPRNet. Although DDPM still generates better results
than MPRNet in terms of PSNR-HVS-M, the difference in
the SSIM values for each noise level is insignificant.

4.3 Qualitative Analysis

When the noise level is low (e.g., ¢ < 0.1), DDPM could
generate denoised images that are visually very close to
the original images. This is also the case for MPRNet.
Table 4 and Table 5 show denoised results of images with
and without high-frequency components. As the variance
of Gaussian noise increases, the DDPM-denoised images
remain realistic while the ones processed by MPRNet grad-
ually become blurry. Compared to MPRNet, DDPM gener-
ally preserves more details of the image during denoising
despite the high levels of noise. One example is that when
o = 0.4, the windows are still in the image denoised by
DDPM, and they are not detectable if denoised by MPRNet
(Table 6).

However, DDPM could still miss details when the noise
level is high enough to interfere with the original informa-
tion encoded in the image. For example, the blossom tree
in the middle of the images in Table 4 has a frequency
that is very close to the Nyquist frequency due to the



TABLE 2: Comparison of bilateral filter (BF), MPRNet, and DDPM in denoising images with high-frequency areas.

- o =0.05 o=0.1 o=0.2 oc=04
Metrics || PSNR | PHM | SSIM | PSNR | PHM | SSIM | PSNR | PHM | SSIM | PSNR | PHM | SSIM
Noisy 2853 | 3318 | 088 | 2267 | 2668 | 066 | 1668 | 2010 | 037 | 1227 | 1448 | 0.19

BF 2982 | 3446 | 093 | 2684 | 2816 | 086 | 2223 | 2198 | 070 | 16.01 | 1667 | 032
MPRNet || 2926 | 31.19 | 093 | 2446 | 2372 | 086 | 2003 | 1783 | 076 | 1629 | 1315 | 0.65
DDPM || 2884 | 3434 | 093 | 2695 | 28.89 | 090 | 2423 | 2343 | 084 | 2026 | 17.49 | 0.76

TABLE 3: Comparison of bilateral filter (BF), MPRNet, and DDPM in denoising images without high-frequency area.

a o =0.05 o=0.1 oc=0.2 oc=04
Metrics || PSNR | PHM | SSIM | PSNR | PHM | SSIM | PSNR | PHM | SSIM | PSNR | PHM | SSIM
Noisy || 2925 [ 3236 | 085 | 2273 [ 2627 | 057 [ 1669 [ 1997 | 029 [ 1226 [ 1436 [ 0.14

BF 31.83 | 3460 | 094 | 2844 [ 2879 | 087 [ 2348 [ 2333 | 071 | 1619 | 17.06 | 027
MPRNet || 3144 | 3280 | 095 | 2655 | 2550 | 092 | 21.23 | 1879 | 085 | 1690 | 1389 | 077
DDPM || 3151 | 3566 | 094 | 29.51 [ 30.96 | 092 | 2559 | 2551 | 0.83 | 21.08 | 18.46 | 0.80

TABLE 4: Noisy images with high-frequency component denoised by DDPM and MPRNet

o =0.05

Original o=0.4

MPRNet

TABLE 5: Noisy images denoised by DDPM and MPRNet (only low-frequency)

Original o =0.05 =04

Z
Py
=




low resolution of the image. DDPM fails to preserve the
semantics of this component and just treats it as noises when
the noise standard deviation is 0 = 0.4, so DDPM processes
this area as a part of the church and removes the blossom
tree. Since low-frequency images generally do not suffer
from noises interfering with the high-frequency component,
DDPM could preserve almost all the semantics even with
high noise levels as illustrated in Table 5.

TABLE 6: Denoised high-frequency component (32x 32
pixels).
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4.4 Generalization to Other Types of Noise

DDPM is trained with Gaussian noises for both diffusion
and denoising steps, which makes it perform denoising well
on images with only Gaussian noises. In real-life situations
such as digital photography, it is often the case that images
do not only contain Gaussian noises but also fall victim
to Poisson noises [13]. To evaluate how well DDPM de-
noises images with Gaussian-Poisson noises, we first added
Poisson noises with the same variance as Gaussian noises
to the images such that the Poisson noises will not be
overwhelmed by the Gaussian noises. Then, we used DDPM
to denoise these images with the step number ¢ computed
according to the given Gaussian noise variance and the
function f~1L.

Results show that the Poisson noises do influence
DDPM'’s ability to denoising. The denoising process does
not increase the PSNR-HVS-M and SSIM values of the
images with Gaussian-Poisson noises as much as the images
with only Gaussian noises (see Table 8 in Appendix). When
the noise variance is low, DDPM could still leave Poisson-
like noises in the denoised results. As the variance increases,
these Poisson-like noises become less significant, but there
will still be noticeable yet undesired dotty artifacts in the
low-frequency area of the denoised results.

We also compared DDPM with bilateral filters and MPR-
Net on a more realistic noise model with which noises are
added to the image to mimic the noises in a real raw image.
To accomplish this, we used the unprocessing approach,
which turns sRGB image to a raw data image of Bayer
pattern by simulating the inverse of ISP. Then realistic noises
are added to the raw image, including photon arrival statis-
tics and imprecision in the readout circuitry. Performing
ISP again generates a sSRGB image with realistc noises [14].
Results (see Table 9 in Appendix) imply that DDPM does not
demonstrate an obvious advantage over the other models on
this task, suggesting the limit of DDPM in denoising noises
that are more complex than purely Gaussian noises.

4.5 Generalization to Out-of-Distribution Data

As the DDRM work suggests, DDRM could generalize well
to out-of-distribution images when it is trained on a multi-
modal dataset (e.g., ImageNet [15]). Our intuitive expla-
nation of this generalization is that DDPM could denoise
any feature (e.g., the texture of an object) that is in the
distribution of the training dataset. For example, the feature
of furry texture learned from images of cats could also be
applied to denoising a picture of a baboon. When DDPM
is trained on a multi-modal dataset, it could process any
image whose major components are in the distribution of
the training dataset. To verify our conjecture, we test if the
DDPM trained on images of churches could denoise images
of bridges (retrieved from Google Maps) and owls (retrieved
from ImageNet [15]) with different levels of Gaussian noises.

In terms of the quantitative metrics, DDPM could de-
noise the bridge images almost as good as church images
for all levels of noise we tested on. However, notice that the
denoising of the bridge image with the noise of o = 0.4
(Table 7) failed to preserve the semantics of the river bank
behind the bridge. The river bank area was interpreted as
a component of a church and is denoised into a church-
roof-like object. This example indicates that DDPM has the
tendency to fit the input image into the image distribution
it is trained on.

DDPM also performs well on the owl image when the
noise level is low, and the high-frequency areas (e.g., the
stripes on the owl’s face) are preserved by DDPM. There
is a nosedive when the noise level rises and the number
of required denoising steps increases. Not only the details
of the owl are lost, but the original structure is also poorly
maintained in the denoising process when o = 0.4. In this
case, the PSNR-HVS-M and SSIM of the denoised results are
both lower than the one of the church images and the bridge
image.

5 LIMITATION AND FUTURE WORK

Due to limited computing resources, we did not train a
DDPM model but instead used a pretrained model that
only takes in images of the size 256 x 256 pixels. Therefore,
we could only compare DDPM and MPRNet on 256 x 256
images, which have much lower resolution than the images
demonstrated in [8]. A comparison between DDPM and
MPRNet on denoising high-resolution images could be done
in the future to provide a more integrated evaluation of the
denoising ability of DDPM.

This work shows that a DDPM trained with Gaussian
noises does not generalize well to other noise models, yet
it is possible to train a DDPM with Poisson noises or
Gaussian-Poisson noises to explore the general performance
of DDPM in denoising different types of noises.

The qualitative analysis of the denoised results is only
made by the authors, which means that the qualitative
analysis could succumb to the confirmation bias of the
authors and be biased toward the DDPM models. The
analysis would be more objective if other human judges
could participate in the visual evaluation of the denoised
images.



TABLE 7: Evaluation of DDPM on Out-of-Distribution Images.

Original o =0.05 oc=0.1 oc=0.2 oc=04
PHM | SSIM PHM | SSIM PHM | SSIM PHM | SSIM
32.70 | 0.86 26.30 | 0.62 20.25 | 0.35

Bridge Noisy

Bridge Denoised

Owl Noisy

Owl Denoised

6 CONCLUSION

In this work, we showed that DDPM could perform denoise
very well on in-distribution images with Gaussian noises,
especially when the noise level is high. DDPM presents a
stronger performance in denoising than bilateral filters and
MPRNet for noticeable noises, especially when the image
contains high-frequency information. However, if the noise
level is high enough to interfere with the semantics of the
image, then DDPM might just ignore the original informa-
tion and denoise the image toward the class of images it is
trained on.

In terms of generalization, DDPM might not denoise
well when the images have a mix of both Gaussian and
Poisson noises. The influence of Poisson noises is more
obvious when the noise levels are low. DDPM can also
denoise out-of-distribution noisy images and output clear
images for low noise levels, yet it might break the original
structure if the noise level is high and requires more steps
to denoise.
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APPENDIX

Fig. 5: Quality of the denoised images to t.

(a) PSNR-HVS-M to ¢ for images with different levels of (b) SSIM to t for images with different levels of noise when
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TABLE 8: Evaluation of DDPM on Gaussian-Poisson noises.
- o =0.05 o=0.1 o= 0.2 o=0.4
Metrics PHM | SSIM PHM | SSIM PHM | SSIM PHM SSIM
Gaussian-Only Noisy 0.87

Gaussian-Only Denoised

Gaussian-Poisson Noisy

Gaussian-Poisson Denoised




TABLE 9: Evaluation of DDPM denoising images with realistic noises.

Noisy

PSNR | PHM | SSIM

BF

PSNR | PHM | SSIM

MPRNet
PSNR | PHM | SSIM

DDPM
PSNR | PHM | SSIM

16.87 | 17.71

0.44

19.06 | 17.44

0.68

19.46 | 18.32 | 0.70

19.50 | 17.94 | 0.68




