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Abstract

We apply different neuronal models of membrane potential voltage to the residual bottleneck
block of a U-Net SNN for depth estimation.

1 Introduction

An important sensing feature of many cognitive systems is vision. Artificial intelligence systems tak-
ing inspiration from natural vision systems obtain state-of-the-art performance (e.g. depth estimation
[PTB*22]) but lack biological plausibility: biological vision systems involve a heterarchy of physical,
chemical, protein and genetic regulatory dynamics obviously unaccounted for in a frame-based model
of vision. That is, they are not simulations of an in vivo biological process of vision perception. Spiking
neural networks (SNN) are an area of research addressing this biological fidelity seeking more accurate
models of neurons and action potential [HPGBF18, NCCC22]. SNNs model the dynamics of biological
neural networks communicating action potentials via synapses as differential equations representing
membrane voltage potential. Neuronal models can be categorized in two ways: pointwise (where the
dendrites, somas and axons are treated as occupying the same point in space) or compartmental (where
dendrites, somas, axons are treated separately and coupled via state variables in the neuronal system
of equations). The connection of these neurons via synaptic models form a network topology. Different
topologies and synaptic weights produce different neural representations and processing of an input
field over time (e.g. light for vision systems, chemical neuroreceptors for olfactory, sound for auditory).
SNNs differ from typical artificial neural networks (e.g. multilayer perceptrons, convolutional neural
networks) because there is an assumed temporal dimension to neuronal dynamics [DF21]. They pro-
vide a membrane potential account of neural circuitry and therefore may be used to test theories of
embedded cognition (i.e. cognition emerges from the interplay of an embrained body and embedded in
an environment) such as neuroconstructivism [WMJ*07]. However, the relationship between structure
(i.e. topologies) and function (i.e. neural activity) is not well understood in biological brains. The
purpose of this paper is to apply a SNN model to stereo depth estimation.

2 Related work

For vision, we may consider a simplified version of the human visual pathway: optical lens controlled
by ciliary muscles to photosensitive retina neurons (where light is encoded into neuronal spikes) down
optic nerve across chiasmus through lateral geniculate nucleus into striate cortex, as well as feedback
throughout. [ZDL'20] presents a retina-like spiking neural network for image reconstruction. [RD20]
makes use of known areas of the brain along the human vision pathway to construct a topologically
analogous SNN network that models spatial and visual mental imagery. [BSGB'17] similarly orga-
nizes its neural architecture based on known anatomical structure, but specifically details the lateral
geniculate nucleus [GKRL17], a subregion of the thalamus involved in vision, treating other neural
populations as retinal neurons or interneurons. Such large scale network models may be useful for
ablation experimentation where lesions (e.g. reducing number of neurons in a population, inhibiting
synaptic dynamics, etc.) at particular points along the pathway are known to produce particular
patterned artifacts in the reconstructed image, and therefore may be compared to empirical evidence.
This may be seen as a perturbation of model parameters to observe change in model behaviour (e.g.



how is the reconstructed perceived visual field affected by reducing the number of neurons within a
population group along the visual pathway? Or, how is the performance of a task affected by changing
the neuronal model?) [CDGM22]. Mesoscopic-level perturbations include lesioning areas (represented
by anatomical subnetworks/modules) such as the retina (i.e. some percentage of either cones and/or
rods are dropped/inhibited) to observe the degraded performance of image reconstruction/task. A
lower-level perturbation of research interest is the neuronal model, as many large-scale simulations
make use of simplified /reduced models in order to be computationally tractable.

Artificial photosensitive spiking retinal networks relate to a new kind of camera sensor called event-
based cameras or dynamic vision sensors (DVS). See [GDO™22] for an extensive review of event-based
vision problems and algorithms. A review of event-based camera and spike-aware algorithms for depth
estimation can be found in [FLB22]. Event cameras code visual information as discrete events (e.g.
changes in light intensity) concurrently over a field of independent photosensitive neuronal models
and require spiking algorithms to reconstruct and process the image. For this reason, SNNs are com-
portable with these event-based retinomorphic sensors that more closely capture the photosensitive
action potential dynamics of biological vision systems. The exploitation of event-based representation
is demonstrated in [RCI21] where two streams of event camera data are passed into an SNN archi-
tecture composed of two cooperative populations (one for coincidence, one for disparity), producing
instantaneous stereo depth perception with real-world stimuli. The work of [OIBI17] similarly uses
two spiking neuron populations connected to two neuromorphic cameras for solving the stereo corre-
spondence problem. However, hardware for event-based cameras can be prohibitively expensive and
so algorithms trained on preexisting datasets with estimated ground truths is an alternative. One such
example is the Multivehicle Stereo Event Camera (MVSEC) dataset [ZT*18] which provides event-
based data for 3D perception tasks. The work of [RCCM21], called StereoSpike, makes use of this
dataset to do depth estimation using SNN-type neural processing in a UNet-like encoder-decoder ar-
chitecture. For spiking data and networks, rather than a single pass of information as in a convolution,
the network is always "on” and processing changes to the current neural representation as opposed
to recording raw values in conventional camera systems. Further challenges arise when attempting to
use conventional image datasets such as the 2021 Middlebury Stereo Dataset [SHKT14] because an
encoding scheme is required to convert input data into the spike domain. A comparative review of
encoding schemes for spiking neural networks can be found at [GFES21].

3 Theory

We extend the work of StereoSpike [RCCM21] by changing the spiking neuronal model at the residual
bottleneck. This is of interest because there is a trade-off between fidelity to explainable reproduction of
biological features versus computational tractability of simulations [Izh04]. We describe the StereoSpike
depth estimation for the MVSEC dataset [ZT 18] as follows.

Two event camera sensors with channel dimensions (H, W) = (346, 260). For each sensor there are
two channels: one for positive log changes in intensity, another for negative. The input f € R**HxW
is downsampled by five blocks, passed into two residual blocks (the U-net bottleneck, two blocks of
size 4 x H27® x W27?), and upsampled back. Convolutions were done by 2-strided 7-wide kernels.
The depth map is produced by connecting the upsampling layers from different scales to interneurons
and training a weight tensor to produce a single image of size (H,W) that estimates depth-per-
pixel. Learning was done using surrogate gradient descent where arctan was chosen for its smooth
approximation to the Heaviside activation function of spiking neural networks. A combination of
regression loss and a smoothness regularizer are used during learning. For the outputted estimated
depth map u and residual R(u) := u — Ugroundtruth, consider the losses:
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We consider four spiking neuronal models implemented by the SNN package SpikingJelly [FCD*20):
integrate-and-fire, parametric leaky integrate-and-fire, quadratic integrate-and-fire, exponential inte-

grate and fire.
Integrate-and-fire (IF), an ideal integrator:

V[t] =Vt —1] + X[t]
if \% > ‘/thresholda then V Vreset
Vieset := reset voltage after spike
X[t] := (integrated) input at time ¢

Vihreshotd := voltage spike threshold

Parametric leaky integrate-and-fire (PLIF), a:

Vit = V]t —1] + %(X[t] = (V[t —1] = Vyeser))

if \%4 > ‘/thTesholda then V Vreset
Vieset := reset voltage after spike
X|[t] := (integrated) input at time ¢

Vihreshold := voltage spike threshold

:= Sigmoid(w),w a learned parameter

O 3|~

Quadratic integrate-and-fire (QIF):
VI = VI~ 1]+ — (X + ao(Vlt — 1] = Veewt) (VI = 1] = V2))

it V> Vinreshotd, then V <= Vigger
Vyest := resting potential of membrane
7 := membrane time constant
Vihreshold := neuron threshold voltage
0 < ag := quadratic term parameter
Vireset := neuron reset voltage
X|[t] := (integrated) input at time ¢

V. := critical voltage threshold by short current pulse

Exponential integrate-and-fire (EIF):
Vit —1] — O,

Vit = VI =11+ 7 (X0 = (VI = 1) = Viear) + Areap(-——
if V> Vinreshotd, then V < Vigger
V9 est := resting potential of membrane
Viyeset := reset voltage after spike
X[t] := (integrated) input at time ¢
Vihreshotd := voltage spike threshold
7 := membrane time constant
A7 := sharpness parameter for exponential

O, := rheobase (membrane potential excitability) parameter



Neuronal model | Average epoch time (s)

IF 179.7935849768775
PLIF 197.56847542354038
QIF 181.4140674148287
EIF 183.87649503435406

Table 1: Average epoch training time over 70 epochs for each neuronal model

Loss scores during training
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Figure 1: Losses were computed for each epoch and compared between training/testing sets

4 Results, Analysis and Evaluation

Code was forked from [RCCM21] and is available at https://github.com/mdpham/StereoSpike. The
file of interest for this report is the network/blocks.py file where different neuronal models are chosen
for the SEW ResBlock class. The script train.py runs the learning algorithm and logs into the results
folder for post-processing. All experiments were run on a 32GiB Memory, AMD Ryzen 9 3900x 12-
core processor x 24 Ubuntu 20.04.3 LTS machine equipped with an NVIDIA GeForce RTX 2080 Ti.
Preliminary experiments on the first generation Mac Mini M1 took approximately 5 hours for each
epoch.

Table 1 shows runtimes for different neuronal models. Similar runtimes and performances are not
surprising given that only a very small part of the model has been changed (the bottleneck neurons,
with the fewest neurons of any blocks). It should be noted that the default neuronal model of PLIF
used by [RCCM21] has a trained parameter that may contribute to the higher training time. More
thorough profiling over statistically large samples is necessary in order to better gauge the effect of
changing such a small number of neurons in the overall model.

Figures 1 and 2 show losses and depth errors (respectively) over the training phase of 70 epochs.
The similar performance may be a result of all neuronal models being capable of representing the
action potential spike trains which suggests that there is a biological complexity and computational
tractability tradeoff to be made. If some set of neuronal models behaves similarly for identical input
then it may be worth it to used the reduced models for improvements in speed at the cost of detail.



Average depth error during training
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Figure 2: Pixelwise residuals between estimated depth map and Lidar groundtruth were computed for
each epoch and compared between training/testing sets
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Conclusion

We extended the work of [RCCM21] by testing more neurona 1 models on an end-to-end spike-coded
depth estimation problem yielding similar performance and runtime. Further directions include chang-
ing different neuronal models for different blocks (e.g. replacing all neuronal models), applying a bi-
ologically plausible unsupervised learning rule such as spike-timing-dependent plasticity (a Hebbian
learning rule) instead of surrogate gradient descent, and topologically modelling the network archi-
tecture more similarly to the human vision system. Some possibly interesting problems to expect for
these directions include:

i

implementing the neuronal models above as differential equations in order to take advantage
of the canonical neuronal model formulation of [Izh04] to investigate phase-space dynamics of
each model as well applying different numerical methods (i.e. ODE integration) to simulate the
voltage values,

. comparing biologically plausible unsupervised learning rules against supervised deep learning

rules,

extending to non-event camera based data and exploring the effect of encoding scheme on per-
formance,

forming an anatomy-function model of human vision informed with where activity takes place
in the brain during depth estimation tasks (this is limited by neurophysiological and cognitive
science understandings in the literature, e.g. there are many different kinds of neuron in the
brain that may require their own neuronal model),

implementing the depth estimation SNN onto a neuromorphic chip in order to improve on size,
weight and power constraints,
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