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Abstract—Image Denoising has been intensively studied in the
image processing pipeline and computer vision tasks. Existing
developed approaches are mainly traditional spatial filtering
algorithms and real-valued deep learning methods. However, few
have attempted to incorporate Fourier transforms into inner
network structures for image denoising. In this paper, we present
an innovative neural network architecture based on previous
image processing research, filtering out noise in both the time and
frequency domains and using residual blocks. We name the pro-
posed architecture as FFTResCNN, and compare its performance
against several other denoising methods, namely BM3D, DnCNN,
and ResDnCNN, using average PSNR as the performance metric.
The experimental results demonstrate FFTResCNN’s superior
performance in image denoising, which successfully integrates
time and frequency residual information to preseve both high-
and low-frequency details.

I. INTRODUCTION

In recent years, images have become an essential medium
for humans to obtain information. Noise is inevitably mixed
(Fan et al., 2019) during acquisition, compression, and trans-
mission due to the influence of the environment, transmis-
sion channel, and other factors, resulting in distortion and
loss of image information. These noises interfere with the
human understanding of the original picture and subsequent
image-processing applications. Thus, Image Denoising, which
removes noise from an input image while maintaining high-
frequency details, is critical in the image processing pipeline
and computer vision tasks. So far, researchers have proposed
various strategies for reducing noise, ranging from classic
spatial domain filtering to neural networks (Fan et al., 2019).

With the more profound exploration of deep learning meth-
ods, in addition to the traditional real-valued neural networks,
some researchers have begun to investigate the use of the
complex domain nature of networks and images. One mo-
tivation that should be considered is the difference between
the spectrums of the clear image and the corresponding noisy
image following (Fast) Fourier Transformation, as Fig. 1
shows. However, few have investigated adding Fourier trans-
forms into inner network structures for image-denoising tasks.
This research aims to propose an innovative neural network
architecture for image denoising based on previous image
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Fig. 1: The spectrums of the clear image and the corresponding
noisy image following Fourier Transformation

processing research, filtering out noise in both the time and
frequency domains and using residual blocks.

This report reviews previous related literature, followed by
detailed descriptions of the data and statistical methods used
and the results of the analysis, including discussions of the
preliminary findings, limitations, and future steps of the study.

II. RELATED WORK

Image denoising has been studied extensively, and there
are many techniques with both advantages and disadvantages.
The existing developed methods are mainly traditional filtering
algorithms and deep-learning-based methods. Traditional algo-
rithms like Spatial Domain Filtering and Transform Domain
Filtering generally target noise that can be easily removed, and
the computational cost is relatively moderate. Nevertheless,
Spatial Filtering blurs and reduces image sharpness. Some
Transform Domain Filtering methods are time-consuming and



rely on the behaviour of the filter function and cut-off fre-
quency (Fan et al., 2019).

Because of its advantages, such as significant feature learn-
ing capability, convolutional neural network (CNN) and its
variants have gained popularity and advancements with the
growth of computational power. In particular, the studies on
neural networks are no longer limited to the field of real
numbers. According to recent research, complex-valued CNN
(CVCNN), which is built on the basic CNN with complex
number operations and computations, offers another promising
deep-learning method for image denoising (Quan et al., 2021).
This innovation focuses on neural networks’ structure, while
the complex-valued properties in the frequency domain are
disregarded. Since the Fourier transform can turn an image into
the frequency domain, researchers have shown that applying
the CVCNN to noisy images after Fourier transform, most
of the time, outperforms some state-of-the-art deep learning
methods (Pham et al., 2021). However, such processing of
images and networks is relatively complicated and is difficult
to generalize. For other image processing tasks, there have
been attempts to combine Fourier transform with the internal
neural network structure. Recently, a method inserting Fourier
transforms to the inner layer structure of the neural networks
has achieved competitive PSNR and SSIM scores on image de-
blurring, which demonstrates the field’s potential and inspires
this report (Mao et al., 2021).

III. THEORY
A. BM3D

The Block-matching and 3D filtering (BM3D) algorithm
is one of the most effective expansions of the Non-Local
Means algorithm, which achieves excellent performance in a
wide range of image-denoising tasks and is regarded as the
most powerful of the traditional denoising approaches (Lebrun,
2012). BM3D is an image-denoising technique that groups
like-minded 2D picture fragments into 3D data arrays to create
an enhanced sparse representation in the transform domain
(Dabov et al., 2007). It is separated into two stages, including
the following components: matched-blocks grouping, collabo-
rative filtering, and aggregation, where collaborative filtering
in step one employs hard thresholding and Wiener filtering in
step two. It initially takes the mean of all identical patches
to generate a 3D matrix, which is then decomposed using a
3D unitary sparsifying transform. The sparse representation
is subsequently filtered via collaborative filtering to remove
high-frequency sounds by achieving coefficient shrinkage. The
filtered block is subjected to an inverse transform, yielding
a denoise 3D block. The target patch for denoise is then
estimated by taking the weighted average of all patches in
the block. The scheme of BM3D is shown in Fig. 2.

B. DnCNN

The DnCNN is a denoising convolutional neural network
that eliminates noise from a Gaussian noisy input picture
(Zhang et al., 2017). The denoised image is computed by
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Fig. 2: The architecture of BM3D

subtracting the residual image from the noisy image. In
this algorithm, residual learning and batch normalization are
used to accelerate the training process and improve denoising
performance. DnCNN’s residual learning technique implicitly
eliminates the latent clean image in the hidden layers, making
the inputs to each layer Gaussian dispersed, less correlated,
and less relevant to the picture content. Furthermore, unlike
previous discriminative denoising models that typically train a
specific model for additive white Gaussian noise at a specified
noise level, the DnCNN model can handle Gaussian denoising
at an unknown noise level (i.e., blind Gaussian denoising). The
architecture of DnCNN is shown in Fig. 3 (Zhang et al., 2017).
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Fig. 3: The architecture of DnCNN network

C. Proposed Structures

The DnCNN is a powerful deep-learning-based denoising
model, and many of the most influential modern denois-
ing models nowadays are developed based on DnCNN. The
network structure of DnCNN is relatively simple, and re-
search shows that the DnCNN model has the property of
fast convergence and efficiency in processing small datasets
(Murali and Sudeep, 2020). With that in mind, we create a



novel architecture based on DnCNN by incorporating Fourier
transforms into inner network structures, which allows us
to obtain the desired outcomes with limited resources. We
propose a residual block with the fast Fourier transform
(FFTResBlock), as illustrated in Fig. 4, to learn the features
of an image in the frequency domain. This block contains the
following three streams: (a) a regular convolution stream in the
middle; (b) the FFT-based convolution stream on the left; and
(c) a standard spatial residual stream on the right. Regular
convolution operators can learn high-frequency details since
they usually extract informative features from edges. The FFT-
based convolution stream has a bigger receptive field, or more
low-frequency global information, because of the character-
istics of the Fourier transform and frequency domain. This
block’s ability to comprehend both high-frequency and low-
frequency information is thus a benefit. We also use the spatial
residual stream to balance the complexity increase brought
on by the FFT convolution stream through the advantages of
residual blocks, such as supporting larger receptive field size,
deeper networks, and faster convergence during training.
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Fig. 4: Residual block with the fast Fourier transform

In the proposed FFTResBlock, the detailed processing of the
FFT-based convolution stream for feature map Z is as follows.
Considering the time complexity, 2D real FFT and its inverse
transform are used in this project.

1) Real FFT is performed on Z to obtain F(Z). F(Z)
values are complex numbers, each consisting of real and
imaginary parts.

2) Concatenate the real part and imaginary part of F(Z)
together along the dimension of the channel.

3) Employ two convolution layers with a ReLU activation
layer in between to the new feature map.

4) The real part and the corresponding imaginary part are
added together to form complete complex numbers, and
then apply the inverse real FFT.

Furthermore, we propose a neural network named
FFTResCNN by plugging the FFTResBlock mentioned above
into the DnCNN. Fig. 5 depicts the specific insertion pro-
cedure. In the middle layers of the DnCNN, a convolution
layer, a batch normalization layer and a ReLU activation
layer are regarded as one unit. We combine two consecutive
units and replace a certain number of units with the proposed
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Fig. 5: The architecture of FFTResCNN

FFTResBlock. If the number of total layers is N, then the
number of such blocks is no larger than % This way,
we can generate FFTResCNN without altering the ordinary
convolution structure. By doing so, it is more reasonable to
infer that the FFT-based convolution stream is the primary
cause of the discrepancy between the two models instead of
other factors. In addition, we remove the FFT convolution
stream to create a basic residual block to rule out the possibil-
ity that the improvement on model performance comes from
the spatial residual stream rather than the FFT convolution
stream. The ResDnCNN network is created by inserting the
basic residual blocks into the DnCNN in a similar manner. In
the following sections, we analyze and compare the BM3D,
DnCNN, ResDnCNN, and FFTResCNN mentioned above to
explore the effect of FFT-based convolution stream on deep-
learning-based denoising models.

D. Evaluation metric

Various metrics can be employed to measure the similarities
between the output and the original image when comparing
them. We use the Peak signal-to-noise ratio (PSNR) value as
a quantitative evaluation metric, which is defined as
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where MAX; is the image’s dynamic range pixel value and
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where [ indicates the original image and K indicates the
approximation.



IV. ANALYSIS AND EVALUATION

In order to make a fair comparison to the previous works,
for image denoising methods investigated in this paper, i.e.,
BM3D, DnCNN, ResDnCNN, and FFTResCNN, we make use
of the same datasets by Zhang et al. (2017), who proposed the
DnCNN model. Following the conventions from Zhang et al.
(2017), the noise level o stated in this paper refers to the
standard deviation of 52= for additive white Gaussian noise.
The training and test datasets are preprocessed in the following

manner.

A. Training

Due to limitations in computational resources and time, we
only considered the noise level o = 25 for blind Gaussian
denoising. To generate the training data for our denoising
experiments, we first crop 25 patches of size 50 x 50 from each
of the 400 grayscale images of size 180 x 180 used by Zhang et
al. (2017), which were previously cropped from the images of
the Berkeley segmentation dataset (BSDS500) (Martin et al.,
2001). The resulting dataset is also augmented by a factor of 2
with random rotation/flip-based operations. The noisy images
are then generated by adding Gaussian noise with noise level
o = 25 to each cropped patch. Our training set thus contains
20,000 patches, i.e., roughly 50 million pixels, which is about
5% of the data used for blind Gaussian denoising by Zhang
et al. (2017).

B. Parameter Setting

Following Zhang et al. (2017), who set the optimal network
depth to 20 for their DnCNN model used for blind Gaussian
denoising, we tested different network depths in the range of
d € [16,24] for our FFTResCNN model to capture enough
spatial information for image denoising. As in Eqn. (2),
the averaged mean squared error between the ground truth
image and the estimated denoised image is adopted as the
loss function to learn the trainable parameters. We initialize
the parameters via Kaiming initialization (He et al., 2015),
and train the models using the Adam optimization algorithm
(Kingma and Ba, 2014) with a learning rate of 0.001, betas of
(0.9, 0.999), and a batch size of 64. The training epochs are
fixed to 50 for all three deep-learning-based models for a fair
performance comparison.

C. Validation and Testing

At the end of each training epoch of DnCNN, ResDnCNN,
and FFTResCNN, the denoising performance of the trained
model is evaluated on the 12 images in the SET12 dataset as
shown in Fig. 6, which are widely used for the evaluation of
Gaussian denoising methods (Zhang et al., 2017) and are not
part of our training dataset.

At test time, we use two different test datasets for com-
prehensive evaluation. In addition to the 12 images used for
validation, we also evaluate our models on the 68 natural
images from the test section of the Berkeley dataset (BSD68),
which is suggested by (Roth and Black, 2005) and later widely
used for measuring image denoising algorithms performance.

Note that all test images are strictly separated from the images
in the training dataset.
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Fig. 6: SET12 - the 12 widely used testing images

D. Experimental Setting and Results

We use the PyTorch implementation of the DnCNN model
written by (Yan, 2017) as the basis for the implementation of
our deep-learning-based models. Unless otherwise specified,
all experiments are carried out with an Nvidia GeForce RTX
2070 GPU. It takes about 60, 60 and 80 minutes to train
the DnCNN, ResDnCNN, and FFTResCNN models on GPU
respectively.

Based on the average PSNR on the test datasets, the optimal
number of layers and residual blocks are determined to be 18
and 6 respectively. Fig. 7 shows the Gaussian denoising results
of the three deep-learning-based models on the validation
dataset with respect to epochs. Fig. 8 and Fig. 9 shows the
sample noisy and denoised images generated during training
(epoch 15) and at the end of training (epoch 50) respectively.
These results demonstrated FFTResCNN’s superior perfor-
mance at each intermediate training step.
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Fig. 7: Gaussian denoising results under Adam optimization
algorithm, with respect to epochs

V. RESULTS

The performance of all the models is evaluated by the aver-
age PSNR with different noise levels on the two test datasets.
Table I shows the average PSNR evaluated on the SET12
dataset, and Table II shows the average PSNR evaluated on the
BSD68 dataset. Fig. 10 shows the final denoising results of one
image from the test dataset using DnCNN and FFTResCnn.



Fig. 8: Sample noisy and denoised images at epoch 15;
Left: DnCNN, Right: FFTResCNN

Fig. 9: Sample noisy and denoised images at epoch 50;
Left: DnCNN, Right: FFTResCNN

A primary finding is that in most circumstances,
FFTResCNN has the best performance as expected, outper-
forming ResDnCNN, DnCNN and BM3D, which suggests
that the proposed FFTResBlock is able to improve the de-
noising performance. This improvement benefits from FFT-
based convolution stream rather than just the residual stream.
Nevertheless, an interesting observation is that when the noise
level is relatively high (e.g., the noise level is 50), the ResD-
nCNN performs comparably to the FFTResCNN (on SET12)
and sometimes even slightly outperforms the FFTResCNN in
terms of PSNR (on BSD68).

Noise Level BM3D DnCNN ResDnCNN  FFTResCNN
15 26.184 32.342 32411 32.527
25 25.451 30.027 30.089 30.139
50 23.172 26.739 26.855 26.876

TABLE I: Comparisons on SET12 Average PSNR (in dB)

Noise Level BM3D DnCNN ResDnCNN  FFTResCNN
15 24.461 31.322 31.390 31.466
25 23.805 28.883 28.953 28.992
50 22.297 25.908 26.027 25.982

TABLE II: Comparisons on BSD68 Average PSNR (in dB)

Fig. 10 shows the denoised results of one image example
from the SETI12 test dataset using BM3D, DnCNN and

FFTResCnn. It can be seen that BM3D denoising makes the
noisy image look smooth and natural, but its downside is that
many details are lost, and the denoised image is blurry. The
denoised results of DnCNN and FFTResCnn are much better
than BM3D. It is worth noting that in the denoised image
of FFTResCnn, compared to that of DnCNN, the background
of the sky looks smoother, while the ground and the crease
in the pants is more apparent, involving more detailed infor-
mation. This finding might support our conclusion that the
proposed architecture is able to comprehend both high- and
low-frequency information.

20.16 dB

BM3D, PSNR = 25.44 dB

Fig. 10: BM3D vs. DnCNN vs. FFTResCNN: final denoising
results of one image from the test dataset (o0 = 25)

VI. DISCUSSION AND CONCLUSION

In this project, we implemented four denoising algorithms,
one traditional spatial method: BM3D, and three deep learning
methods: DnCNN, ResDnCNN and FFTResCNN. In general,
an analysis of the findings suggests that the proposed architec-
ture in this study helps to improve the denoising performance
of the original network. This enhancement likely comes from
the properties of the proposed FFTResBlock, learning from
both the time and frequency domain and integrating both low-
and high-frequency information.

In the Results section, a finding worth discussing is that
although FFTResCNN generally outperforms other methods,
ResDnCNN is competitive on relatively high noise levels and
sometimes yields even better results. We speculate that one
reason may be the size of the noise level applied during the
blind training. Recall that in the training steps, the noise levels



are randomly selected from O to 55. A noise level of 50 is
close to the endpoint, so there might not be enough training
data around that noise level. Another conjecture is that when
the noise level is too large, the frequencies are similar in
the frequency domain, so the global information learned from
spectrums might be less helpful.

In the context of this report, it must also be mentioned that
there exist certain limitations. These limitations need to be
addressed in future research to further validate our claims. One
main limitation is the limited number of training data. Previous
research used around 200,000 samples in training, while we
only trained models on 20,000 samples due to the limited
time and hardware resources. Thus, more training data and
data augmentation methods should be involved. Also, since
we only investigate the performance on grey scale pictures,
training and testing data may be altered in the future to
validate the performance using different datasets, such as
colour RGB photos or videos. Another limitation is the noise
level discussed before. Further studies could try to contrast and
observe the denoising performance of each algorithm at more
training noise levels and observe the performance with the
changes in noise levels. Moreover, we would generalize and
apply the proposed blocks or similar ideas to other networks
for future work.
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