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Abstract—Image Super Resolution is an attracting computer vision task, and many deep learning based methods achieved
outstanding performance, e.g. GANs. Very recently, Diffusion Probabilistic Model, a relatively new kind of generative model, also
demonstrates its great potential to deal with this task. Despite the excellent results on their training and testing sets, almost nobody has
shown existing methods’ ability to generalize to new domain images. In this work, we take SR3 as an example and evaluate its
generalization ability with limited fine-tuning steps, new domain training data and range of time steps both qualitatively and
quantitatively. We also evaluate whether naive fine-tuning will impair the model’s original performance.

Index Terms—Diffusion Probabilistic Model, Fine-tuning, Image Super Resolution

1 INTRODUCTION

MAGE Super Resolution is one image-to-image translation

task, which aims to construct high-resolution (HR) image
from low-resolution one [1]. Like other inverse problems
in computer vision, e.g. image in-painting, SR is a hard
problem because given a LR image there are multiple corre-
sponding HR counterparts and vice versa.

The success of deep generative models demonstrates
its ability to model complex image distribution, and have
been applied to SR as solving a conditioned generation
task, especially for generative adversarial networks (GANSs)
based methods [2]. Though GANs achieved relatively good
performance, they typically require specially designed reg-
ularization and optimization tricks to deal with training
instability and mode collapse. Recently, diffusion probabilis-
tic model based method thrives and achieved comparable
performance with SOTA methods in computer vision tasks.
SR3 [3] is a simple SR method adapted from Denoising
Diffusion Probabilistic Model (DDPM) [4], which simply
minimizes a well-defined loss function and do not rely on
those regularization and optimization tricks from GANSs.

Even though there are various of generative models
and they performed excellent with their testing data, it’s
still a question that whether those generative models can
generalize well to the data beyond their training and testing
datasets. Unfortunately, related research on the generaliza-
tion ability of SR models are almost absent, and there only
exist one research tries to benchmark it [5]. Generalization
ability is a critical aspect of deep learning models and there
are studies point out existing SR model may not be able to
generalize well to new domain data [6]. As shown in Figure
1, the pre-trained SR3 model can obtain good SR result on
FFHQ and CelebA-HQ, which are the original training and
testing datasets, but fails to construct satisfying SR image on
animation faces. We can see there are obvious distortions in
the SR animation face.

In this work, we want to explore the generalization abil-
ity of SR3 through limited fine-tuning, and mainly answer
the following questions:

1) Can pre-trained SR3 be directly applied to new

SR

Fig. 1: HR, LR and SR images using pretrained model on
different Datasets. The performance of pretrained model
degrades when there exists domain gap between training
and testing data.

domain of data? We can clearly see in Figure 1 that
this may not give us desired outcome.

2) Can we fine-tune the pre-trained model for few
steps in order to have good SR results? Training
from scratch often takes too much time which is
not acceptable, however, fine-tuning the pre-trained
model is much cheaper and probably can yield good
result.

3) Can we fine-tune the pre-trained model with limited
amount of new domain data in order to have good
SR results? It’s not enough if the pre-trained model
can be fine-tuned with few steps, we also want
it to be fine-tuned with as few new domain data
as possible, because we may not have much new
domain data before and it’s costly to collect the data.



4) Do we need to fine-tune the model with all the
timesteps? DM generates new data by transform
the simple distribution through a Markov Chain
process step by step, and the simple distribution
will gradually become our desired empirical image
distribution. Since we are starting from the same
simple distribution for different image domains, the
later steps should share more similarities than the
starter steps, and the domain gap between new data
and pre-trained data may be aligned by fine-tune
the starter steps only.

5) Will the fine-tuning harm the performance on orig-
inal datasets? Ideally, we want our model could
deal with all the tasks well at the same time, and
it may not be satisfying if fine-tuning will sacrifice
its original performance.

2 RELATED WORK

In this section, we will quickly review some related work in
image super resolution and diffusion probabilistic model.

Super Resolution: Image Super Resolution (SR) is an
important computer vision task, which aims to generate
high-resolution (HR) image from low-resolution (LR) image
[1]. The final objective can be considered to learn a function
that can reverse the degradation process from HR to LR
images. There are numerous existing works addressing this
issue, and can be roughly divided into two categories: real-
world image pair based method, synthesized image pair
based method. Note that we mainly focus on deep learning
methods for SR.

For real-world image pair based methods, they require
HR and LR image pairs captured in the real-world by ad-
justing the focal length and other parameters of real camera
[7]. This is beneficial because the model have the chance
to directly learn the degradation process in the real-world.
However, collecting such data is not easy because you have
to keep the other conditions the same while taking photos
with different resolutions.

Synthesized image pair based methods also required
paired HR and LR image, but the LR image is synthesized
by algorithms, e.g. bicubic. This makes it easy to collect HR-
LR image pairs, because you only need to have the HR im-
age. And methods trained with synthesized image pairs also
achieved astonishing super resolution results [2]. Within this
category, we can even done super resolution only with LR
images. ZSSR is a zero-shot super resolution method which
explores the internal recurrence of information inside the
LR image during the test time [8]. More specifically, ZSSR
synthesized LRLR image from testing image, and utilize
LRLR-LR image pair to train a small image-specific CNN
at test time.

Diffusion Probabilistic Model: Diffusion Probabilistic
Model (DM) was first introduced by [9] in 2015, and plays
an increasingly important role in computer vision tasks after
the success of DDPM [4]. DM is a kind of generative models
which transform the data from a simple distribution, e.g.
Gaussian, to our desired distribution following a Markov
Chain process. DDPM directly works on images to perform
unconditional image generation. SR3 adopted similar archi-
tecture with DDPM, but conditioned on LR image to per-
form image super resolution [3]. Rather than directly works
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Fig. 2: From left to right is the diffusion process, which
gradually add noise to the image. From right to left is the
inference process which iteratively recover the image from
noise. Note that the condition x is not shown in the figure.

on pixel spaces, latent diffusion models (LDMs) applied
DM in latent space by adding an encoder and a decoder to
transform the image pixels to its latent representations [10].
In this work, we mainly focus on the generalization ability
of SR3, which is the most simple DM based SR method, and
leave the discussion of LDMs for future work.

3 SR3

In this section, we will briefly review the basic concepts of
DM and how SR3 works.

3.1 Conditioned Diffusion Model

Consider a conditional distribution p(y|z), and we are given
samples drawn form this distribution, represented as input
and output image pairs D = {z;,9;}~ . This is a one-to-
many mapping problem, meaning given a certain x, we
have multiple corresponding ys, and our goal is to approxi-
mate the conditional distribution p(y|x) with a function fo,
where ¢ denoted the parameters of the model. In image
super resolution tasks, input image and output image pairs
are LR and HR images pairs.

SR3 follows the idea of DDPM and adapts it to this
conditional distributed problem. The diffusion process and
reverse process are illustrated in Figure 2. From left to
right is the diffusion process, which gradually transforms
Yo ~ p(y|z) to pure noise image yr ~ N(0,I) by adding
noise at each time step ¢. From right to left is the reverse
process, which iteratively recovers the output image. Sup-
pose both diffusion and reverse process satisfies Markov
Chain assumption, denoted by q(y:|y;—1) and pg(y;—1|ys, )
respectively. Our goal is to learn the function fp, which can
model the distribution pg(y:—1|yt, z) well.

3.2 Gaussian Diffusion Process

In SR3, the diffusion process is defined as Gaussian Diffu-
sion Process which adds Gaussian noise at each time step.
Since diffusion process follows Markov Chain assumption,
we define ¢ as the following:

T

q(yrrlyo) = [ a(welye—v), (1)
t=1

q(Yelyi—1) = N(yelv/auys—1, (1 — a)I), 2

where o, is hyper-parameter, subject to 0 < a; < 1, which
defines the variance of the noise added at each time step.



Algorithm 1 Optimizing Process of SR3

Algorithm 2 Inference Process of SR3

1: repeat

Sample (z,yo) from Dataset

Sample time step t ~ U(1, MAX_TIMESTEP)
Sample noise € ~ N(0, I)

Take gradient step on

V| fo(x \/—yo+v1—5t€ Bt) —€||p

6: until converged

And according to Eq.1 and Eq. 2 and Markov Chain, we can
derive q(yt|yo) as:

a(yelyo) = N (yelv/Bryo, (1 — Be)I 3)

where 3; = szl «;. Moreover, as illustrated in [4], we can
derive the posterior distribution of y;_; given (yo,y:) as

q(Ye-1lyo, ) = N(ye—1lp, o*I)
\/5t11—04t \/_1—51& 1)
1- 6y -8 @
o2 = (l—ﬁt—l)(l—at).
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With this posterior distribution, we can parameterize the
reverse process and it helps us formulate the loss function
in later sections.

3.3 Optimizing SR3

In DDPVV,, it treats the our function fy as a noise predictor,
which means given a specific time step ¢ and the corre-
sponding noisy output image, the function should predict
the noise used to generate that noisy image. SR3 follows the
same idea, and with Eq.3, given the original output image
Yo, we can derive the noisy output image at time step ¢ as:
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Based on Eq.5, we can rewrite our denoising model
as fo(x,y, ), which takes the conditioned input image z,
the sufficient statistics for the variance of the noise 8 and
sampled Gaussian noise € as input. Note that the time step
t used in DDPM’s optimization is embedded into 3 in SR3’s
optimization. Our objective is to let fy(z,9, 5) predict the
sampled noise ¢, and the objective function can be written
as

€ ~ N(0,I). )

,VByo +v1—Be,B) —€lB,  (6)

where (z,y) is sampled from training dataset, and p €
{1,2}. In [4], it justifies that when p = 2, the objective func-
tion can be interpreted as the variational lower bound on
the marginal log-likelihood of E, 4 log ps(y|z). The whole
optimizing process is illustrated in Algorithm1. Whenp =1,
it becomes L1 loss, and when p = 2, it becomes 1.2 loss.

(m y)]Eé ﬂ”fe

1: Sample yr ~ N(0, )
2: fort="T,...,1do
3:  Sample noise e ~ N(0,I)ift > 1, else e =0
4:
e =1 — =2 folar, e B)) + VT = e
Yt—1 \/OTt Yt m 0 s Yty Pt t
5: end for
6: return yo
3.4 Inference with SR3

Inference with SR3 is the reverse process of diffusion model.
This process starts with a pure Gaussian noise yr, and can
be formulated as the following;:

T

po(yo-r|z) = plyr) [ [ po(ve-1ly:, z) )
=1

p(yr) = N(yr|0,1) (8)

Po(Ye—1|Ye: ) = N (ye—1|po (@, ye, Br), 07 1). )

The inference process is defined as isotropic Gaussian con-
ditional distributions, pg(y:—1|y:, ), which are learned.

Our denoising model fj is trained to predict noise €, and
if we substitute the noise in Eq.5 with the predicted noise,
we can approximate yq as:

do = %(yt T Bofo(@, e, 1))

Recall the Eq.4 in previous section, we can substitute the
estimated 7y into the posterior distribution ¢(y:—1|vo,yt),
and this gives us the mean of py (yt_l |ys, x) as:
1 B, 1-—
1/ Ot VvV 1-—

Note that the variance of pg(yt_1|yt,:z:), o2, is still not
defined, we set this variance to (1 — a;), which is the same
as the diffusion process.

Now we can estimate y;_; at each time step in the
reverse process through parameterization as:

(10)

f0(33 Yt, Bt))- (11)

:ue('fbayhﬁt) =

Y1 \/la_t(yt — \}f_—ogtfe(ﬂf,yt,ﬁt)) + V1 — e,
(12)

where €, ~ N(0,I). After iteratively estimate y;_; from
Yt, * and fy, we can eventually recover the output image.

3.5 SR3 Model Architecture

SR3 adopts a modified DDPM’s U-Net architecture, which
mainly replaces and increases the residual blocks used in
DDPM, and re-scales skip connections by —=. More de-
tails can be found in original paper of SR3 [3]. In order
to condition on the LR image during training, SR3 uses
bicubic interpolation to up-sample the LR image to the same
resolution as HR image. The up-sampled LR image, z, is
simply concatenated with y; along the channel dimension
as the input to fy. The whole inference process is illustrated
in Algorithm2.



Fig. 3: The leftmost column shows the HR images and the second column shows SR image using the pretrained model
without fine-tuning. Other columns show SR images with different fine-tuning steps. SR images above are fine-tuned with

L1 loss, and below are fine-tuned with L2 loss.

4 EXPERIMENTAL RESULTS

4.1 Training Details and Noise Schedule

Training Details: For all experiments, we used Adam opti-
mizer with fixed learning rate of 1e-4 and batch size of 4. We
also set the dropout rate to 0.2 following SR3. The total time
step was set to 2000, and we performed 16 x 16 — 128 x 128
for all super resolution experiments. Images with different
original resolution were resized with bicubic interpolation.
All experiments were carried out on a single GTX 1060 GPU.
Noise Schedule: We adopted a linear noise schedule for a:

1072 -1096

a; =1075 + 7 (t—1).

4.2 Datasets and Pre-trained Model

In this work, we used three datasets: FFHQ [11], CelebA-HQ
[12] and an animation faces dataset AnimeF.

FFHQ and CelebA-HQ: Both FFHQ and CelebA-HQ are
real human faces dataset, which contians 70,000 and 30,000
images respectively. Different from CelebA-HQ, FFHQ cov-
ers a wider variation in terms of age, ethnicity, image
background, and accessories such as eyeglasses, sunglasses,
hats, etc.

AnimeF: This is an animation character faces dataset
released by Prof. Huang-yi Lee in his Machine Learning
courses at National Taiwan University. It contains 71,314
images from the internet.

In this wrok, due to computational limits, we only used
128 images from AmimeF for training and 8 images for
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Fig. 4: The leftmost column shows the HR images and the second column shows SR image using the pretrained model
without fine-tuning. Other columns show SR results fine-tuned on different amount of data. All SR images are fine-tuned

2000 steps with L1 loss.
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Fig. 5: The leftmost column shows the SR images fine-tuned with all possible time steps, and the second column shows
SR image using the pretrained model without fine-tuning. Other columns show SR results fine-tuned on different range of
time steps. All SR images are fine-tuned 2000 steps with L1 loss.

testing. For evaluations on FFHQ and CelebA-HQ, we only
used 8 images from each dataset. Note that in SR3, it uses
FFHQ as training set and CelebA-HQ as testing set.

Pre-trained Model: Since there isn’t an official im-
plementation of SR3, this work is based on the repro-
duction by Janspiry. As mentioned by Janspiry, there
might be slight difference between the official imple-
mentation and reproduction, but since SR3 was a rela-
tively simple method, we assume this discrepancy will
not cause major difference in our experiments. The pre-

trained model has been trained on FFHQ for 640k steps.
All experiments were based on the same pre-trained
model released at https://github.com/Janspiry/Image-
Super-Resolution-via-Iterative-Refinement.

4.3 Fine-tuning with Limited Steps
4.3.1 Qualitative Evaluation

Figure.3 shows the SR results of fine-tuning with different
steps with L1 loss and L2 loss respectively. Images above



TABLE 1: Quantitative evaluations on different fine-tuning
steps

| PSNRt  SSIMt  LPIPS|
FFHQ 22.56 0.673 0.2331
CelebA-HQ 23.27 0.676 0.2355
Baseline 20.01 0.495 0.3770
L1 loss
400 20.81 0.499 0.3314
1200 20.98 0.515 0.3192
1600 20.71 0.508 0.3111
2000 21.16 0.524 0.3136
4000 20.69 0.504 0.3088
12000 21.57 0.540 0.3062
L2 loss
400 20.39 0.479 0.3499
2000 20.32 0.488 0.3236
6000 2091 0.513 0.3091
8000 21.12 0.521 0.2985
12000 21.66 0.539 0.2968
18000 21.75 0.542 0.3002

are results of L1 loss, and we can see we obtains much
better SR images after fine-tuning than the baseline, which
corresponds to directly use the pre-trained model. And it is
obvious that with the steps increased from 400 to 4,000, we
get clearer results with more high frequency details in the
image, e.g. hairs. Note that the step here is different from
epoch, a step is a single update with gradient calculated
from a single batch, while an epoch updates the model with
the entire training set once. However, more fine-tuning steps
does not necessarily mean better visual performance. We
can see SR results fine-tuned with 12,000 steps are blurrier
than SR results with 4,000 steps fine-tuning. Images below
are SR results fine-tuned with L2 loss, and we have similar
findings with the results fine-tuned with L1 loss. We think
fine-tuned with 8,000 steps with L2 loss achieves the best
visual performance, with fewer steps, there will be still some
distortions in the image, with more steps, the image become
less sharp.

Comparing SR results between L1 loss and L2 loss, we
think their best visual performance are about the same,
however, it takes more steps for L2 loss. Because of this,
we will only report evaluations with L1 loss in the later
sections.

4.3.2 Quantitative Evaluation

Table.1 shows the quantitative evaluations on different fine-
tuning steps with L1 loss and L2 loss respectively. We use 3
three different metrics for evaluation. PSNR and SSIM [13]
are the most widely used measurements for the quality of
image restoration. In comparison, SSIM gives better indica-
tions in terms of image quality. However, these two metrics
may not correlate well with human perception, especially
when the input resolution is low and the magnification
factor is large [3]. LPIPS [14] is a recently proposed metric,
which measures the difference between the ground truth
image and the target image in the latent space with pre-
trained model. This metric is better correlated with human
perception than PSNR and SSIM. We can see after fine-
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Fig. 6: LPIPS results for different steps and different amount
of data for fine-tuning

TABLE 2: Quantitative evaluations on different amount of
data for fine-tuning

| PSNRt  SSIMt  LPIPS|

FFHQ 2256 0673  0.2331
CelebA-HQ | 2327 0676 02355
Baseline 20.01 0.495 0.3770
128 2116 0524 03136

64 2135 0527  0.3063

32 2156 0536  0.3208

16 21.99 0552 03417

8 2207 0555  0.3465

tuning, we have better results in terms of all three metrics.
For results of L1 loss fine-tuning, PSNR and SSIM do not
correlate well with our qualitative evaluation, this may
because there exist squared error and covariance terms in
PSNR and SSIM respectively, and L1 loss does not necessar-
ily minimize thess terms. This is verified by the results of
L2 loss fine-tuning which explicitly minimizes mean square
error, and with more steps, we have better PSNR and SSIM
results. LPIPS results matches well with our qualitative eval-
uation, while there still have some mismatches. We think
there are two reasons for this issue: one is that qualitative
evaluation is quite subjective and our perception may not
represent the truth; another reason is that LPIPS’s model is
pre-trained with real-world images, which means it may not
be able to transform animation characters into latent space
well, resulting in inaccurate measurement. We believe the
latter one may be the case, because even though we think
the SR images are quite like the HR images, there is a big
gap between the LPIPS’s results of FFHQ, CelebA-HQ and
AnimeF. However, there are also gaps between the PSNR's
and SSIM’s results, and all these gaps may be explained as
the domain gaps between the datasets themselves. We can’t
determine the true reason for this and leave this for future
work.



TABLE 3: Quantitative evaluations on different range of
time steps for fine-tuning

| PSNRt  SSIMt  LPIPS|

FFHQ 2256 0673  0.2331
CelebA-HQ | 2327  0.676  0.2355
Baseline 20.01 0.495 0.3770
1-2000 2116 0524 03136
1-100 1562 0302  0.4692
1-500 2071 0514  0.3082
1-1000 2091 0513 0.309
1000-2000 | 2172 0541  0.3349
1500-2000 | 2129 0519  0.3678
1900-2000 | 2093 0527  0.3890

4.4 Fine-tuning with Limited New Domain Data
4.4.1 Qualitative Evaluation

Figure.4 shows the SR results fine-tuned with different
amount of new domain data. For efficiency, we fine-tune the
pre-trained model with 2,000 steps, which yield good visual
performance in the previous section, using L1 loss for all
different data sizes. Generally, we have better results with
more new domain data, the SR images become blur when
there are only few data in the training set. However, we
obtain better results fine-tuned with 64 new images than 128
new images. This is because we fix the steps for fine-tuning
and the corresponding epochs will change. For example,
when we fine-tune 2,000 steps with 128 training images, we
actually fine-tune the model for 62.5 epochs (batch size is
4). If we halve the training set, we double the epochs. And
the epochs of training set with 64 images after 2,000 steps is
the same as the epochs of training set with 128 images after
4,000 steps. Recall that we obtain best visual performance
with 4,000 steps fine-tuning in the previous section, and this
explains why we have better result fine-tuning on 64 new
images. This can also explain why we get blur SR images
with very few training data. In the previous section, we find
that after more steps, the image become blurrier, and here
we fine-tune our model with more epochs when there are
fewer training data, which causes the SR images to be blur.

4.4.2 Quantitative Evaluation

Table.2 shows the quantitative evaluation with different
training data. This time LPIPS perfectly matches our quali-
tative evaluation, but PSNR and SSIM don’t. As argued in
[3], PSNR and SSIM are extremely conservative with high
frequency details, which prefer blurrier images. And this is
not the only reason, as shown in Figure.6, even with fewer
steps we still cannot obtain good results with insufficient
amount of data, the lack of new data itself also causes the
image to be blur.

4.5 Fine-tuning with Different Time Steps

4.5.1 Qualitative Evaluation

Diffusion model generates image based on the reverse
Markov Chain, which starts with pure Gaussian noise. If we
assume the reason that the pre-trained model cannot gener-
alize well on the new dataset is that there exists domain gap
between the datasets. We can expect that the domain gap

Baseline

Fig. 7: SR results on FFHQ and CelebA-HQ after different
steps of fine-tuning.

will gradually diminish as ¢ become larger, and eventually
become zero. For image super resolution tasks, we need to
condition on the LR image for generation, such that the
domain gap will not become zero, but it’s still reasonable
to expect smaller gaps when ¢ is large.

Following this idea, Figure.5 shows the SR results fine-
tuned with different range of time steps. We can see we
achieve comparable or even better result only fine-tuning
the first 500 or 1,000 time steps, which verifies our as-
sumption above. Similar with the results in Section 4.4, we
actually performs more fine-tuning if the range of time step
is small, and this explains why we have even better results
than fine-tuning with all the time steps. However, if the
range of time step is too small, e.g. 0-100, the domain gap is
still large and we have the worse result than the baseline. As
our assumption suggested, only fine-tuning the later part of
the Markov Chain will give us worse results than only fine-
tuning the former part.

4.5.2 Quantitative Evaluation

Table.3 shows the quantitative evaluation with different
range of time steps. Again, LPIPS matches well with our
qualitative evaluation, but PSNR and SSIM don't.

4.6 Does Fine-tuning Impair Original Performance?

We have demonstrated that we can achieve good SR re-
sults on new domain data with limited fine-tuning in the
previous sections. Now, the question is whether this will
impair the model’s original performance. Unfortunately, the
answer is yes, as shown in Figure.7. We can see there
are more distortions in the SR images when we fine-tune
more steps. The quantitative results in Table.4 also verifies
this fact. The only good news is that there are only few
distortions in SR images on FFHQ and CelebA-HQ, when
we obtain the best performance on AnimeF, namely fine-
tuning with 4,000 steps. This indicates that it may not impair



TABLE 4: Quantitative evaluations on FFHQ and CelebA-
HQ after fine-tuning

| PSNRT  SSIM?  LPIPS)
FFHQ
Baseline | 2256  0.673  0.2331
2000 2289 0666 02525
4000 2269 0661  0.2592
12000 23.07 0666  0.2659
CelebA-HQ

Baseline 23.27 0.676 0.2355
2000 2376  0.701  0.2320
4000 2339 0689  0.2427
12000 2396 0701  0.2498

the model’s original performance much with few steps of
fine-tuning, and we may obtain satisfying results with new
domain data.

5 CONCLUSION

In this work, we explore the generalization ability of SR3 in
image super resolution task by fine-tuning the pre-trained
model with limited steps, new domain training data and
range of time steps. We demonstrate that fine-tuning with
less than 1% of pre-training steps, we can obtain fairly
good results on new domain data. The amount of the new
domain data needed for fine-tuning is a little bit tricky, if
you have too much data, it may take more steps for fine-
tuning, and if you only have very insufficient data, you will
not have satisfying SR results. We have also shown that it’s
not necessary to fine-tune all the time-steps, fine-tuning only
on the first half will give you almost the same or even better
result.

However, there are still problems we haven't resolve
yet, and can be considered as future work. First, we only
explore the generalization ability of SR3 which works on
pixel space, the diffusion model works on the latent space
may not share the same result, e.g. LDMs. Secondly, there
exists a gap between quantitative results on FFHQ, CelebA-
HQ and AnimeF. Lastly, naive fine-tuning will impair the
model’s original performance. Hope these problems will be
resolved in the future.
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