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Abstract—Subglottic stenosis (SGS) is a rare disease that is difficult for clinicians to measure during routine endoscopic examination.
We propose the use of continuum robotics and computer vision techniques to reconstruct the stenosis from collected endoscopic
videos to improve the decision-making of the clinician. A virtual SGS model was constructed with textures taken from endoscopic
videos. A continuum robot was controlled in Unity to capture different viewpoints of the SGS from above the vocal chords. The
collected images were used to train NeRF and MonoSDF models. The best performing model was the vanilla-NeRF model with the full
dataset that was able to reconstruct the stenosis with minimal artefacts. This project was a stepping stone to determine which models
could be used as a backbone for the 3D reconstruction of subglottic stenosis.

Index Terms—3D Reconstruction, Neural Radiance Fields, Laryngeal Stenosis, Endoscopic Video

1 INTRODUCTION

UBGLOTTIC STENOSIS (SGS) is a rare recurrent disease
Scharacterized by the gradual narrowing of the airway
between the vocal cords and trachea. The current standard
of care is routine laryngeal examinations with a flexible
monoscopic endoscope to monitor the length and width of
the stenosis and to determine when surgical intervention
will be required. However, conventional exams provide
clinicians only with a top-down view of the stenosis, mak-
ing it difficult to visualize and quantify the extent of the
disease progression. Additionally, patient intolerance and
the narrow airway heavily restrict the laryngoscope move-
ments and accessible camera viewpoints to create robust 3D
reconstructions.

Computer-assisted diagnosis with continuum robotics
and endoscopic 3D reconstruction of the affected area has
the potential to provide clinicians with an appropriate mea-
surement tool of SGS. Continuum robots are flexible, joint-
less structures that can perform complex bending motions.
Continuum robots have a low diameter to length ratio and
have been developed to navigate through confined spaces
and reach sites of interests through complex trajectories.
These characteristics make continuum robots ideal candi-
dates to help increase camera viewpoints in SGS examina-
tion while minimizing patient discomfort when navigating
an obstructed airway.

The task of 3D reconstruction from multiple RGB images
has been a fundamental problem in computer vision and
has been particularly challenging in medical applications.
With the recent emergence of coordinate-based neural net-
works, compact, memory-efficient multi-layer perceptrons
have been used to parameterize implicit shape representa-
tions such as occupancy or signed distance functions (SDF)
and reconstruct scenes. Neural radiance fields (NeRFs) have
achieved improved reconstruction results by expressing vol-
ume density as a function of the underlying 3D surface.
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Although NeRFs were initially designed for simple scenes
with dense viewpoint sampling, recent improvements have
allowed this reconstruction technique to perform well in
the presence of limited input views (at least 3 images)
and for scenes with large textureless regions. This makes
NeRF an exciting technique to explore for 3D reconstruction
with medical endoscopic images, which typically have been
limited by their restricted camera viewpoints and large
textureless regions.
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Fig. 1. Anticipated Examination Procedure

In this paper, we present the development of a method
for 3D reconstruction of the subglottic region with sparse
viewpoints captured by a continuum robot in a virtual
environment (Fig. 1). This paper aims to compare the perfor-
mance of the original NeRF algorithm to a neural radiance
field capable of processing depth and surface normal cues
(MonoSDF) on simulated endoscopic images. Additionally,
by replacing the traditional laryngoscope with a continuum
robot, we examine how the number of camera poses affects
the quality of 3D reconstruction.

In summary, we make the following contributions:

e We create a dataset for SGS with virtual models
of the larynx and stenosis, accounting for surface
specularities and tissue texture. We develop a Unity
scene with a continuum robot and 3D models of the
larynx with varying severity of subglottic stenosis.



e We analyse and compare the novel view synthesis
and 3D reconstruction results using vanilla-NeRF
and MonoSDF on our custom dataset.

2 RELATED WORK
2.1 Structure from Motion

Structure from Motion (SfM) is a reconstruction method that
detects features on collected images, finds correspondences
between different frames, and uses triangulation to create a
surface for visualization. However, its application in endo-
scopic videos has been challenging due to the deformability
of tissues, smooth and textureless surfaces, and imaging
specularities [1].

The Medical and Computer Vision Lab (MEDCVR) has
been working on developing a reconstruction technique
for the laryngeal region and monoscopic endoscope videos
based on the SfM method. The reconstruction algorithm in-
cludes a pre-filtering step from endoscopic videos to ensure
that the frames used for feature detection and matching
have a similar anterior glottic angle of the vocal cords, cre-
ating a pseudo-rigid problem. A learning-based approach
with Correspondence Transformer for Matching Across Im-
ages (COTR) was used for feature matching to account
for the low-textured regions [2]. The current pipeline is
capable of reconstructing virtual models of the larynx, but
fails to reconstruct the stenosis beyond the vocal cords. The
method is extremely sensitive to lighting conditions and
specularities, and creates a misaligned model when applied
to real endoscopic videos.

2.2 Neural Radiance Fields

In contrast to SfM which only may use deep learning
for parts of the reconstruction pipeline, recent neural ap-
proaches use multilayered perceptrons (MLP) to parame-
terize the surfaces of objects. Neural field representations
are compact, differentiable and easy to optimize. Neural
radiance fields (NeRF) represents scenes as an MLP that
outputs volume density and view-dependent emitted radi-
ance as a function of 3D location and 2D viewing direction
[3]. Given a viewing angle, novel scenes can be created by
casting simulated camera rays and using the volume ren-
dering equation to determine the resulting view-dependent
colour. Positional encoding is used to map the 3D location
and 2D viewing angles into higher dimensional space to
allow the model to learn higher frequency details. NeRF
drastically outperformed other methods for novel scene
synthesis and 3D reconstruction. The method drastically
reduces the amount of space required to represent a single
scene in 3D, but requires a lot of time to train. Furthermore,
neural radiance fields need diverse camera poses, a large
image dataset, and were originally not adapted to specular,
dynamic or deformable scenes.

2.3 Monocular Geometric Cues for Neural Implicit Sur-
face Reconstruction

In MonoSDF, monocular geometric priors were incorpo-
rated in neural implicit surface reconstruction methods to
improve the reconstruction quality [4]. This framework uses
a pretrained Omnidata model [5], [6], a neural network
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trained to estimate surface normals and depth from monoc-
ular images. This method was developed to address the
poor reconstruction quality in NeRF for textureless regions
and to decreases the number of photos required for ac-
curate reconstructions. The method also explored different
choices for neural implicit surface representations includ-
ing dense signed distance function grids, single MLPs,
single-resolution feature grid with MLP decoder, and multi-
resolution feature grips with MLP decoders. MonoSDF was
able to handle complex 3D scenes with many different sur-
faces. For sparse inputs, depth and normal cues improved
the reconstruction quality and was more robust to less-
observed regions than other methods. However, the results
of the model were extremely dependent on the quality of
the extracted monocular cues.

3 METHODS

3.1 NeRF
3.1.1 Scene Representation

Continuous scenes can be parameterized as a function tak-
ing 3D position x = (z,y, z) and 2D viewing direction (6, ¢)
as inputs and outputs an emitted colour ¢ = (r,¢,b) and
volume density 0. The MLP architecture used to estimate
the function Fg : (x,d) — (c,0) is shown in Figure 3.1.1.
Inputs are mapped to higher-dimensional space using po-
sitional encoding to improve its performance on data with
high frequency variations in colour and geometry.

Let p = (z,¥, z). Then the positional encoding used for
NeRF is given by equation 1.

cos (2°7p) sin (2%7p)
cos (217p) sin (217p)
A(p) = | cos (227p) sin (227p) (1)
cos (2L~tmp) sin (2L 1np)

The MLP processes the input with 8 full-connected layers
with ReLU activations and 256 channels per layer, and
outputs ¢ and a 256-dimensional feature vector. The fea-
ture vector is concatenated with the viewing direction and
passed through one more layer with 128 channels and ReLU
activation and outputs the view-dependent RGB.
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Fig. 2. NeRF architecture
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Fig. 3. Virtual SGS NeRF Reconstruction Workflow

3.1.2 Volumetric Rendering of Network Output

Let r(t) = o + td represent the parameterized camera ray.
The expected colour of the camera ray r(¢) is given by:

C(r) = / "o (e ()T (0)e(x(t), d) di @

n

where: T'(t) = exp~ i o) 45 i the accumulated trans-
mittance, o(r(t)) is the absorption coefficient, and c(r(t)) is
emissive radiance. This integral is discretized by sampling
points along the ray and summing them according to equa-
tion (3):

N
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Here 0; = t; 1 —t; is the distance between adjacent samples.
To optimize the network, NeRF randomly samples a
batch of camera rays from the set of all pixels from the
dataset to render a volume as outlined above. The loss that
the MLP aims to minimize is the total squared error between
the predicted and ground truth R, G, B values as shown in

equation (4).
Lrgh = Y [Cprea(r) — Cor(r)I3 @

recR

3.2 MonoSDF

MonoSDF explored different design choices for representa-
tion neural implicit surfces such as a dense signed distance
function (SDF) grid, a single MLP, as well as hybrid options
such as a single-resolution feaure grid with MLP decoder
and a multi-resolution feature grid with MLP decoder. Sim-
ilar to NeRFE, to render a pixel, a camera ray is cast using
the parameterized equation r(f) = o + td. N points are
sampled along this ray to predict the SDF 5. and colour
values ¢.. Next, density values are learned by transforming
SDF values with a learnable parameter 3 as follows:
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The colour for the current ray Cpreq(r) is calculated simi-
larly to NeRF in equation (3). Depth D,,cq(r) and normal
Npred(r) of the surface of the ray is calculated as:

N
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i=1
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where:
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and where 11 is the 3D unit normal vector or the analytical
gradient of the SDF function.

To optimize the network, in addition to the RBG re-
construction loss as in equation (4), MonoSDF also aims to
minimize the Eikonal loss (10), depth consistency loss (11),
and normal consistency loss (12).

Leikoral = Y (IVFo(x)|]2 — 1) (10)
xeX
Edepth = Z (”UJDzn"ed(r) + Q) - Dgt(r)||2 (11)
reR
Lormal = Z(”Nprﬂi(r) - Nyt(r)Hl
reR
+ 1 = Nprea(r) " Nge(r) 1 (12)

4 EXPERIMENTS
4.1 Data Generation and Prepossessing

As Figure 3.1.1 shows, to create the Unity dataset, we
generate a 3D model of the subglottic region and larynx
with surface specularity and tissue texture by using MAYA
and import the 3D model into Unity. We further create a
continuum robot-like 3D object in Unity, with a controller
script that can change the robot’s position and orientation.
At last, we attach a Unity camera at the robot’s tip as an
end-effector. We design a controller to save the camera view
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as a PNG image with a width and height of 504 and 378
pixels, respectively. In our dataset, we generate 59 images
using the Unity camera to capture the subglottic region with
a different position and orientation, all from the top view of
the model with the larynx model placed vertically in the
Unity axis.

We convert the dataset into two formats: Local Light
Field Fusion(LLFF) format [3], [7] and Replica format [4]
to train the vanilla NeRF model and MonoSDF model.
For LLFF format, we use COLMAP [8], [9] to recover the
camera poses of the input images, as suggested by the LLFF
repository. [7]. We then use the output from COLMAP and
the converter scripts from the LLFF repository to convert
our custom data into LLFF format. The LLFF format data
is further used to train the PyTorch-version of NeRF model,
named nerf_pl [4].

For Replica format data, we use the output from
COLMAP and the converter from the MVSNet repo to
convert the custom data into MVSNet format [10]. We then
extract the monocular depth and normal information of each
image by running a pre-trained Omnidata model following
the instructions from the MonoSDF repository. We will train
the MonoSDF model with the Replica format custom data.

4.2 Experiment Design

We train 3 NeRF-based models: two are Vanilla NeRF
models based on a PyTorch re-implementation of NeRF,
named nerf pl [11], and a MonoSDF model. One NeRF
model is trained with the full dataset, and another with a
subset of the dataset that contains 35 images from the Unity
dataset in LLFF format. Both models are trained with default
hyperparameters suggested in nerf_pl, and both models are
trained with 20 epochs, the top 5 epochs with the highest
PSNR values are saved, and the models with the highest
PSNR values are used in the reconstruction comparison. For

Fig. 4. Rendering Results of Different Reconstruction Models on Test Images

MonoSDEF, we train the model with the default hyperparam-
eters used in the MonoSDF repository. We use the model
trained with 500 epochs for the reconstruction evaluation
and comparison with the other two NeRF models.

5 RESULTS

We test the reconstruction quality of the 3 trained models
on 5 select test images and report the mean, and standard
deviation of the PSNR values among the test results, as well
as the PSNR value for each test image, as Table 1 shows.
We also include the comparison of the rendering results
from three models with the ground truth of the test images,
demonstrates in Figure 4.

TABLE 1
PSNR Values of Different Reconstruct Methods on Test Images

Method | NeRF | NeRF-35 | MonoSDF

Training Epoch 1 il 500
Mean 25.32 17.28 18.89
Standard Deviation 1.30 1.20 227
Test Image 0 24.25 16.69 20.97
Test Image 3 26.87 15.80 20.79
Test Image 8 26.82 16.50 20.45
Test Image 45 249 18.56 16.25

Figure 5 demonstrates the rendering results from 12
different simulated viewpoints, generated by our best per-
forming model (the NeRF model trained with a full dataset).

6 DisSCuUSSION

We chose to evaluate the NeRF model with a full dataset and
with half the dataset to see how the reconstruction quality
changes with the number of input images. As shown, more



Fig. 5. Rendering Results of NeRF on Simulated Camera Positions

input images improves the overall reconstruction quality- as
highlighted by the higher PSNR. Although NeRF-35 is able
to render images where the subglottic region is identifiable,
the artefacts make it difficult to visualize the stenosis cor-
rectly. Additionally, the specular reflections and textureless
regions makes the subglottic region difficult to capture with
a vanilla-NeRF model.

We also chose to compare the vanilla-NeRF model with
the MonoSDF model, to see whether the MonoSDF model
would be able to use the normal and depth cues to create
a better reconstruction. As outlined in the paper, MonoSDF
was intended to help decrease the number of images re-
quired in the dataset as well as improve the rendering of
textureless regions. Our model was not able to properly
learn information about the depth and surface normals.
Despite our RGB and Eikonal loss decreasing, the depth
consistency and normal consistency losses did not converge
during training.

We believe that MonoSDF’s poor performance could be
attributed to the quality of monocular cues derived from
the pretrained Omnidata model or the noise in the camera
positions and directions, as determined by COLMAP. The
paper mentions high dependency on the monocular cues for
model performance. The poor reconstruction results along
with the high depth and normal losses, suggest that this
may our model’s shortcomings. We predict that the depth
and normal cues can be better estimated using an Omnidata
model, or other monocular cue model, that is trained on
endoscopic images, or simulated endoscopic images. The
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Omnidata model in the MonoSDF repository was trained
on regular inputs such as chairs, tables, etc. and therefore
may be inadequate for textureless, endoscopic simulations.

6.1 Future Work

To improve the scene reconstruction, we propose testing our
dataset on VoISDF, a model that parameterizes the density
in neural volume rendering [12]. Since the MonoSDF model
is derived from this model, we want to assess whether
the rendering issues arise from the noise in the camera
positions. The only losses this model considers is the RGB
loss and the SDF loss, therefore, it will help us understand
what a good starting point will be for model improvement.

Furthermore, MonoSDF is extremely dependent on the
quality of extracted depth and normal cues. By retraining
the Omnidata model on endoscopic images or simulated en-
doscopic images, we could anticipate that the model would
perform better with this type of information. Therefore,
retrying our dataset with an improved Omnidata model
could help the model create better reconstructions.

Finally, the subglottic region is dynamic and deformable.
During an actual endoscopic examination, the vocal cords
are constantly opening and closing, reducing the frames
where the stenosis is visible. We should experiment with
reg-NeRF, a model that has been specialized to deal with an
extremely low number of input images.

7 CONCLUSION

Clinicians treating subglottic stenosis (SGS) have a difficult
time visualizing and measuring the length and width of the
disease in the narrow airway. A virtual SGS model with
specular reflections and low-textured regions was modeled
in Unity with a continuum robot controlling an endoscope.
A dataset was constructed to simulate endoscopic images
collected during a SGS examination. NeRF was tested on
the full and half the dataset, whereas MonoSDF was im-
plemented for the full dataset. NeRF was able to create
the best reconstruction results of SGS, whereas MonoSDF
was unable to learn the depth and normal information
correctly. This project identified that improvements need
to be made in existing neural radiance fields methods to
accurately capture the textureless and shiny surfaces found
in endoscopic videos.
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