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Abstract—Image denoising is removing noise from a noisy image, so as to restore the true image. In this paper, we proposed a
network that combines the structure of UNet and ResNet to do the image denoising. Our new architecture has the best PSNR in the
denoising experiment. In addition, Most of denoising work has largely focused on minimizing the mean squared error (MSE). The
resulting estimates have high PSNR but lacks high-frequency detail which makes them perceptually unsatisfying. To overcome this
limitation, we add a perceptual loss function motivated by perceptual similarity instead of similarity in pixel space. Our joint loss function

made our result has better visual effect.

Index Terms—Computational Imaging, Neural network, Computer Vision

1 INTRODUCTION

HE use of images has significantly increased during
Tthe past ten years. Nowadays, because of the limit of
environment, transmission channel and devices, more and
more images are captured in poor conditions, therefore,
distortion and loss of picture information are inevitable. The
demand of clear and sharp images hastens the emergence of
different image denoising techniques. However, it remains
a challenging and open task. The main reason for this is
that from a mathematical perspective, image denoising is an
inverse problem and its solution is not unique. Computer-
aided methods algorithms have been widely used in this
task. Traditional model-based methods such as non-local
means (NLM) [1], block-matching and 3-D filtering (BM3D)
[2], weighted nuclear norm minimization (WNNM) [3] rely
on image prior modeling, and their optimization algorithms
are time-consuming. Nowadays, machine learning models,
especially neural network frameworks are employed by
many researchers on image denoising. DnCNN [4], a deep
convolutional neural network for image denoising model
proposed by Zhang et al. is a prominent adpation of neural
network. Inspired by previous remarkable works, we intend
to use the most recent developments in neural networks
to improve the performance of image denoising. We are
interested in combining two outstanding models: ResNet
[5] and Unet [6] to explore denoising tasks and improve the
performances.

2 RELATED WORK

As one of the most significant problems in computer
vision, image denoising task draws big attention of re-
searchers. Numerous neural network techniques have been
proposed for this problem. Being one of the pioneers,
Jain and Seung [7] proposed a convolutional neural net-
work(CNN) on image denoising in 2008. On that basis,
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Zhang et al. [4]proposed a deep convolutional neural net-
work for image denoising (DnCNN). This model improves
the denoising performance by stacking multiple blocks of
convolutional layers, batch normalization, and rectified lin-
ear unit (ReLU) activations. Gurprem Singh [8] and his team
members proposed a deep convolutional neural network
with added benefits of residual learning for denoising. The
network is composed of convolution layers and ResNet
blocks along with rectified linear unit activation function,
and it is capable of learning end-to-end mappings from
noise-distorted images to restored cleaner versions. With a
single end-to-end model, this model can tackle different lev-
els of Gaussian noise efficiently. Another work from Javier
Gurrola [9] uses a residual dense UNet neural network for
image denoising. In this work, they present a residual dense
neural network (RDUNet) for image denoising based on
the densely connected hierarchical network. The encoding
and decoding layers of the RDUNet consist of densely
connected convolutional layers to reuse the feature maps
and local residual learning to avoid the vanishing gradient
problem and speed up the learning process. The fact that
these frameworks achieve impressive results shows that it
is promising to use UNet and ResNet on denoising tasks.
The common-used benchmark, PSNR [10] calculates
the ratio between the maximum possible value (power)
of a signal and the power of distorting noise to evaluate
the denoised image. This pixel-based measurement, how-
ever, does not account for perceptual variations between
the output and ground-truth images. Many recent studies(
[11], [12]) have proved that the perceptual loss using the
feature comparison method is more in line with real visual
perception, and can restore clearer images and visual effects.
Much better blurring results than using only the MSE loss.

3 METHODS

We propose a network that combines the structure of
UNet and ResNet with the joint objective function including
perceptual loss.



3.1 UNet

In 2015, Ronnebergeret al. [6] proposed the UNet
framework for Biomedical Image Segmentation. There are 4
down-sampling blocks and 4 up-sampling blocks. The UNet
extract the main feature of the image during down-sampling
and allow the network to propagate context information
to higher resolution layers during up-sampling. In order
to localize, high resolution features from the contracting
path are combined with the upsampled output through
SkipConnection. No fully connected layers are included in
the framework. By mirrioring the input image, this strategy
can predict the missing context in the noised image.

input
image |&|»|
tile

output
segmentation
15 map

i ]

I

HH —

[ ——

=»conv 3x3, ReLU
copy and crop
¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1

Fig. 1: UNet architecture

3.2 ResNet

Deep convolutional network seems a great tool for
imaging problems, but when the network is very deep,
this may result in vanishing or exploding gradients; To
overcome these problems, ResNet [5] was proposed in 2016.
Each block was given by adding residual learning operation
in ResNet to improve the performance of image recognition,
which leads to ResNet winning the mageNet LSVR in 2015.
Figure 2 depicts the concept of residual learning.
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Fig. 2: ResNet framework

3.3 ResUNet

ResNet with a series of stacked residual blocks is
powerful enough to extract features and strengthen the
feature propagation during training and testing. Meanwhile,
UNet with a symmetrical structure performs excellently for
biomedical images. With the intention of combining the ben-
efits of these two approaches, we propose a multi-stage ar-
chitecture of Deep ResUNet, Figure 3 illustrates our network
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Fig. 3: ResUNet framework
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architecture for image denoising. We adapted the overall
structure of UNet. Generally, our network can be divided
into two parts: Downsampling and Upsampling. The first
part (downsampling part) composed of 4 downsampling
blocks is designed to extract the features, also known as
the”contracting” path in UNet. For each downsampling
block, we have 2 Res-block. Each Res-block consists of a
convolutional layer, followed by a ReLU layer and then
another convolutional layer. The second part (upsampling
part, or “expansive ” path in UNet) is utilized to generate
the denoised image using the extracted features at different
stages of the encoding part. Between each downsampling
block and upsampling block, a skip connection is operated.
Unlike the conventional UNet, which implements by con-
catenating, we do the add operation. The proposed Deep
ResUNet inherits both the benefits of ResNet and UNet.
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Fig. 4: Downsampling Block

Figure 4 illustrates the details of an example downsam-
pling block. The block starts with a conv-ReLU layer and
adds another convolution layer, then plug in the original
input to complete a Res-block. And we repeat the same
steps once again. Two Res-blocks made up a downsampling
block. Then moving down to the next downsampling block,
the size was reduced to half.

3.4 Objective funtion

Previous learning-based image restoration tasks use
mean squared error (MSE) as the objective function to
achieve a higher signal-to-noise ratio. However, this method
of pixel-by-pixel comparison is found to be prone to loss



of detail information, resulting in blurred results [13].
Whereas, by comparing the image feature differences, per-
ceptual loss can rebuild more details therefore, provides
clearer result. Combining the advantages of both, we pro-
poses a new joint loss by using A as the coefficient to balance
different loss terms:

‘Closs = AEMSE =+ Eper

Denote the original image as X, the denoised image as x’, the
ground truth image as y, the width of image as W and the
height of image as H. We will use MSE loss:

P
MSE = W H
or cross-entropy loss function to train this model. And for
the perceptual loss part, the denoise images from UNet-
ResNet model and the ground truth images will be both
sent to a pre-trained 16 layer VGG network [14]. We will
grab the (x’) and (y) from one of the convolutional layer to
calculate the perceptual loss:
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4 EXPERIMENTAL RESULTS
4.1 Dataset

The dataset we use to train and test our networks is
Berkeley database (BSDS300) [15]. There are 200 images in
training samples and 100 images in testing samples. When
we train our network to denoise the images, we clip the
images to many 32*32 patches and add noise separately on
them in order to augment the dataset amount and enhance
the image details of learning. For our denoising experi-
ments, we add sigma =0.01, 0.02, 0.05 and 0.1 Gaussian noise
on the training dataset. For testing our models, we test on
the same noise level as the training set. But we only train one
single noise level sigma = 0.1 for ResUnet with perceptual
loss due to the time and GPU limitation. We may add more
experiments on this in future work.

Since we also curious about the utility of our Re-
sUNet model with/without the new loss function on deblur-
denoise task (like The task 3 in our Homework 5), we still
use the BSDS300 dataset and also clip the images to 32*32
small patches. We extract the blur kernal from MNIST and
add it on the dataset, then add sigma = 0.01, 0.02, 0.05, 0.1
Gaussian noise on the training dataset. For testing models,
we test on the same noise level as the training set. Again
we only train one single noise level sigma = 0.1 for ResUnet
with perceptual loss due to the time and GPU limitation.

4.2 Experiments on Denoise Task

We train three different denoise networks: UNet with
MSE loss, ResUNet with MSE loss and ResUNet with joint
loss (MSE loss and perceptual loss) on the same training
samples with different noise level and learning rate = le-
3. For the third model, the perceptual feature is generated
by a pretrained VGG-16 model. We feed the denoised results
from ResUNet to the pretrained VGG-16 model and sum the
3th, 8th and 15th layers” MSE loss to calculate the perceptual
loss. However, we observed that the perceptual loss and the
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MSE loss have different scales: the MSE loss is too much
smaller than the perceptual loss. To balance the effects of
these two losses on our model, we decided to multiply a
coefficient value on MSE loss. We tried 1, 10 and 100 three
different coefficient values and it proves that 100 has the
best performances. Therefore, the loss function for the third
model is

Eloss = 100 x ['MSE + Lper

We compare the PSNR in Table 1 and the qualities of
denoised images in Figure 5 generated from these three
models. We also compare how the PSNR changes with the
noise level in Figure 6.

Figure 5 visually compares the denoised images from
these three models. In this work, We used the same test
dataset with sigma = 0.1 to evaluate. We can see the UNet
can dramatically reduce most of the noise but it still has
some not smooth parts with lots of blurs and artifacts.
ResUNet can further remove the noise and recover more
details. In the first row, we can see the sky and cloud
generated from ResUNet are more clear and have a stronger
color comparison than the result from UNet. The artifacts
in the sky disappeared and it has a better definition of the
boundary between the cloud and the background. In the
third row, from the results obtained by ResUNet, we can also
figure that the texture on the vase is clearer than the result
of UNet. It illustrates more details and more realistic light
reflection. Our PSNR supports our findings as well. The
PSNR of ResUNet results is around 30.11db, while the PSNR
of UNet results is around 29.32db. The PSNR increases by
0.8. All the evidence can prove that our Res-blocks have a
great effect on the image denoising performance.

Figure 6 displays how the PNSR varies with the noise
level. Both Unet and ResUnet have excellent performance
(PSNR over 43db) on lower noise level and the performance
gets worse as noise level goes up. However we notice that
ResUnet has more stable performance than Unet in higher
noise level.

Compared the results generated by ResUNet with per-
ceptual loss with others, we can observe this method can
not only significantly restore more details but also strongly
strengthen the boundaries and edges. In the third row, the
results of ResUNet with perceptual loss can even indicate
more details of textures on the vase than the result of
ResUNet. All boundaries of the textures are clear and easy
to see. In the fourth row, similar to the previous case, most
of the fluff on the chick can be clearly visible. We argue
that these improvements are contributed by perceptual loss.
Based on the idea of being closer to perceptual similarity,
perceptual loss is proposed to enhance the visual quality
by minimizing the error in a feature space instead of pixel
space. Each layer in the VGG-16 learns different small
features of images so adding the loss from different layers
to our loss function is actually extracting more information
from the image.

However, the PSNR on the results generated by Re-
sUNet with perceptual loss is around 29.50dB, which is
slightly lower than the PSNR (30.11dB) on the results gen-
erated without the perceptual loss. The main reason for
this is that perceptual loss can make the denoised images
have sharper features so that the remainder of the pixels are
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Fig. 5: Illustration of performance of different denoising approach. From left to right: original image, noisy image, UNet
denoising, ResUNet denoising, ResUNet denoising with perceptual loss
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Fig. 6: Noise Level vs. PSNR in denoise task

TABLE 1: Compare PSNR of denoised images from three

models

sigma || UNet | ResUNet | ResUNet with Lper

0.01 43.1701 43.1752 -
0.02 38.7747 | 39.1049 ~
0.05 32.8163 33.5873 =
0.1 29.3147 | 30.1055 29.5025

generally less important from a human viewer’s perspective
of image quality. On the other hand, from the human
viewer’s perspective of images, people believe that images
with clearer boundaries and sharper features have higher
quality, even though the results don’t exactly match the
ground truth. Another reason for the decreased PSNR is
adding the perceptual loss changes the image color slightly.
The denoised images look a little bit lighter than the ground
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Fig. 7: Tllustration of performance of different deblurring and denoising approach. From left to right: original image, noisy
image, UNet denoising, ResUNet denoising, ResUNet denoising with perceptual loss

truth. This may be due to the loss of which layer we added
from our VGG-16. In future work, we can try to add the loss
from other layers to adjust the image color. Besides, we also
consider that the patch size of our training samples is too
small (32*32), which may result in the deeper layers of our
VGG-16 fail to learn useful information.

In this image denoising task, our purposed model
ResUNet is able to achieve the best PSNR and it is more
resistant to higher noise level than Unet. In addition, to a
certain extent, the work we explored with perceptual loss
indicates that it is helpful to the restoration of the images,
and it also gives us a new understanding of evaluating the
image quality.

4.3 Experiments on Deblur and Denoise Task

Similar to the previous task, We train three different
deblur-denoise networks: UNet with MSE loss, ResUNet

with MSE loss and ResUNet with MSE loss and perceptual
loss on the same training samples with different noise
levels with learning rate 5e-4. This time, we also clipped
the training samples and trained on the blurred and noisy
images.

We compare the PSNR results in Table 2 and the qual-
ities of deblurred-denoised images in Figure 7 generated
from these three models. Again, We also compare how the
PSNR changes with the noise level in Figure 8.

In this work, we evaluated all the models on the same
test dataset with the same blur kernel and noise level as
the training set respectively. From these images, we can find
that UNet is capable of removing most of the noise but the
retrieved images still have lots of distortions, and objects
are pretty blurry. The boundaries of objects are too vague
to recognize. However, our purposed model ResUNet can
recover better the background of the images. The results



generated by ResUNet display that it can further eliminate
distortions and smooth images. In the second row, we can
see the sky background from ResUNet is clearer and purer
than the result from UNet. Besides, we also notice that
ResUNet can enhance details and sharper the edges of
objects. In the fourth row, the marmots faces recovered by
ResUNet have more black patterns than the ones recovered
by UNet. The stone in the right top indicates very sharp
edges and corners, and the marmots also have very clear
outlines, which make them stand out from the background
very well.

The results generated by ResUNet only have minor
outperformance than UNet. There are not significant visual
differences between ResUNet results and UNet results. The
PSNR on ResUNet deblurred-denoised images is 35.86dB,
which is only 0.2 higher than The PSNR on Unet deblurred-
denoised images. We believe that ResUNet does have crucial
impact on image denoising, but its performance may be
weakened due to the blur that we added. In the future work,
we will consider trying different combinations of blur level
and noise level to investigate the utility of our purposed
model on deblur task.

In the Figure 8, we can observe that both of the Unet
and ResUnet have good deblur-denoise performances in
lower noise lever and the performances get worse with noise
level increases. But the ResUnet is always slightly better
than Unet.

Comparing the results retrieved by ResUNet with per-
ceptual loss with others, we discern that it can further
smooth the hazy and ambiguous areas especially the single
color blocks, and it can generate stronger edges and textures
of objects. In the first row, the mountain and its boundary
in the image restored with perceptual loss is remarkably
clearer than the one without the perceptual loss. In the third
row, in the image generated with perceptual loss, we can
observe more details and small shallow parts in the smoke.
It not only has sharper light and shadow borders but also
contains a more prominent colour contrast to distinguish
the smoke from the sky. What’s more, we noticed that the
images recovered with perceptual loss is more realistic than
the ones recovered without perceptual loss. In the fourth
row, the image retrieved with perceptual loss emphasizes
the furs of the marmots and the shape of the marmots,
which makes people feel the fuzzy of the marmots. It also
weakens the existence of the background to highlight the
presence of the marmots.

The PSNR of on the deblured-denoised images gen-
erated by ResUNet with perceptual loss is 25.46dB. Even
though it is 0.4 lower by the PSNR on the restored images
without perceptual loss, it still have impressed advantages
on deblur and denoise task. The reasons about the decreased
PSNR has been discussed in the previous part, such as the
deblurred-denoised images look good in human vision but
not exactly match the ground truth and the image color
changed a little bit.

In this image deblur-denoise task, our purposed model
ResUNet is able to achieve the best PSNR even if there is
no huge difference among these three models. Our results
show that ResUNet works well on image denoising but is
sensitive to blur. Adding the perceptual loss is helpful with
the deblurring job and enhances the vividness of image but

we still need more experiments to improve it.
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Fig. 8: Noise Level vs. PSNR in deblur-denoise task

TABLE 2: Compare PSNR of deblurred and denoised images
from three models

sigma || UNet | ResUNet | ResUNet with Lper

0.01 29.1276 29.3524 -
0.02 28.4789 28.6914 -
0.05 27.1468 27.2149 -

0.1 25.6711 25.8606 25.4638

5 CONCLUSION

Upon the task of image denoising, we came up with
this new method that plug the residual neural network
into UNet. Comparing to the original U-Net architecture,
the performances of our porposed model ResUnet on de-
noising tasks are obviously superior. By using the updated
loss function with perceptual loss, more distinct edges,
more vivid colors and more abundant details are able
to be achieved. Besides, regarding to the experiment of
deblurring-denoising, we discuss the strength and limita-
tion of the proposed architecture. Further work on using
neural network to denoise images are worth investigating.
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