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Abstract—Generating realistic 3D objects and rendering them at arbitrary viewpoints is important to scale the content creation and
sensor simulation for robotics training the testing. To achieve this goal, we need to learn a 3D generative model that is able to
synthesize 3D objects with diverse and accurate geometry, robust and photo-realistic appearance, and can be rendered efficiently. The
generated 3D contents thus can be immediately deployed to facilitate downstream applications. Existing works on 3D objects
generation usually cannot generate high-fidelity geometry, or cannot generate photo-realistic renderings compared to real images. This
introduces a large domain gap when composing those assets with real images. In this project, we plan to utilize a 3D geometry-aware
framework that learns 3D assets generation from real-world data. We model the shape and appearance of the 3D object using an
implicit neural feature fields, and utilize differentiable rendering and neural rendering to synthesize the 2D image. The code is available
at: https://drive.google.com/drive/folders/19uWIsDIlyKh_pSXPwX9anr8osifBDrZaN?usp=share_link.

Index Terms—Neural Scene Representation, Volume Rendering, Genarative Model

1 INTRODUCTION

Inspired by the tremendous progress in 2D image gen-
eration [1], [2], [3], 3D content generation has attracted
more and more attention in recent years. Existing works
demonstrated the high-quality generation in different rep-
resentations including point cloud [4], [5], [6], [7], voxel
grid [8], [9], [10], [11], [12], mesh [13], [14], [15] or implicit
geometry [16], [17], [18], [19]. However, these works usually
focus on the synthetic datasets where the observations are
dense and the objects are created with simplified materials
and lighting conditions. Those assumptions will not hold
in the real world. Specifically, the observations are often
sparse and noisy (e.g., noisy segmentation masks, imperfect
calibration and localization, etc). Therefore, the quality for
generated meshes is not sufficient for the real applications
(See Figure 8 in the state-of-the-art work [19]) such as
realistic sensor simulation for self-driving.

In this project, we focus on the object-level in-the-wild
3D model generation. Built on top of the existing approaches
(EG3D [16] and GET3D [19]), the ultimate goal is to generate
a diverse set of 3D vehicles that contains realistic baked tex-
ture (more advanced material modeling is not considered)
and can be rendered for actor insertion.

To achieve this goal, we first prepare multi-view images
that contain vehicles in the real-world dataset Pandaset and
Multi-view Marketplace (MVMC). We generate an object
mask for each image using segmentation techniques and
then filter out those low-quality images and occluded ve-
hicles. In this way, we can obtain high-quality multi-view
images that contain the same vehicles from real-world data.

As the next step, we explore two baseline approaches 1)
volume rendering based approach (EG3D), 2) differentiable
rendering based approach (GET3D). The overall pipeline
can be summarized as follows: Given some latent codes,
the network will produce some implicit feature grids or

Fs; We render the images at random viewpoints given
the implicit representations either by volume rendering the

feature grids or using differepfiable mesh extraction and
rendering; Finally, we use a G to judge whether the ren-
dered images are real or fake. The full pipeline is differen-
tiable and end-to-end trainable. We train these two baseline
models on the real-world dataset. However, since real-world
observations are quite sparse (several images with limited
viewpoints) and localization/calibrations are noisy, the 3D
generation results from the two baseline methods are not
satisfactory.

To overcome the limitations and effectively handle the
sparse viewpoints and noisy calibrations, we propose sev-
eral techniques to improve the generation results: (1) Since
the real-world observations are quite sparse (several images
with limited viewpoints), it is usually challenging to gen-
erate without sufficient data priors. We add some template
meshes (e.g., vehicle CAD models) as initialization and let
the network predict the vertex offset, scale, etc. (2) We
introduce a novel shape-aware energy function and a Lapla-
cian loss to regularize the 3D vehicle shapes. With these
improvements, our model could significantly outperform
the baseline approaches and could generate high-quality 3D
vehicle meshes from real-world data.

In summary, we would like to bridge the gap between
synthetic and real 3D generation. The generated high-
quality 3D vehicles can be potentially used to create an
alternative asset bank compared to expensive/unrealistic
3D CAD models or inefficiently reconstructed assets that
are widely used in the industry.

2 RELATED WORK

We review recent advances in 3D generative models, neural
rendering, and supervisory signals.
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2.1 3D generative models.

2D generative models have achieved remarkable progress
in photo-realistic image synthesis, and many approaches at-
tempt to extend the success of 2D generative models into the
3D space. Mesh-based GANs [20] rely on primitives used
in computer graphics, but cannot generate high-fidelity
images. Voxel-based GANSs [21] extend the 2D convolutional
generators into the 3D space. However, due to the high
memory demands of voxels and the computational con-
sumption of 3D convolutions, generating high-resolution
volumes and images is quite difficult. Recent works [16],
[19] incorporate implicit representations into the generative
models and could produce high-quality images and 3D
models efficiently. However, these approaches are trained
on synthetic.datasets and cannot be generalized to real-
world scenas.

2.2 Neural scene representations and neural render-
ing.

Neural scene representations leverage differentiable 3D-
aware representations that can be optimized with 2D multi-
view images via neural rendering. Some approaches [24]
resort to explicit representations such as voxels, but those
methods are hard to scale up to high-resolution scenarios.
Other approaches utilize implicit representations [25] or hy-
brid explicit-implicit representations [26] for more efficient
neural rendering.

(4]

2.3 3D representations and supervisory signals.

Existing works on 3D generation from images can be
divided based on the 3D representations they used and
the supervisory signals. Occupancy networks [27] leverage
implicit representations to learn 3D reconstruction from
the functional space. PointFlow [28] learns to generate 3D
point clouds from images with point-wise supervision. Tex-
ture3D [29] proposes to reconstruct 3D meshes and textures
from images. Those methods generally rely on 3D super-
visory signals. However, since 3D models are relatively
expensive to obtain, these approaches are hard to generalize
to real-world scenarios.

In addition to reconstruction leveraging 3D signals, there
is also a category of works that generate novel views
without 3D supervision. NeRF [30] is a pioneering work
that proposes neural radiance field for novel view syn-
thesis. Numerous papers [16], [17], [18], [31] have been
trying to improve NeRF for 3D-aware novel view synthesis.
However, these methods are restricted to view synthesis
of objects or simple indoor scenes, and cannot effectively
handle complex driving scenarios.

3 METHOD

In this paper, we have tried three approaches for realistic
3D vehicle generation. We first apply two popular 3D gen-
eration models, i.e., EG3D [16] and GET3D [19] on the real-
world self-driving data. Then, we identify the limitations
of the two models, and propose a novel approach for
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Fig. 4. Generated geometries from EG3D and GET3D - CAD on real-world datasets.

more realistic in-the-wild vehicle generation. We will first
introduce the driving data preparation, and then briefly
introduce the architecture of EG3D and GET3D models.
Finally, we discuss our modifications to improve the 3D
vehicle generation process.

3.1 Data preparation

We conduct 3D vehicle generation using the data from
PandaSet [22]. PandaSet is a real-world autonomous driving
dataset that contains 103 driving scenes and 8240 data
frames. The data collection vehicle is equipped with 6
cameras (front, front-left, left, front-right, right and back
cameras) and 2 LiDAR sensors (a 360° mechanical spinning
LiDAR and a solid forward-facing LiDAR), providing 6
images from different viewpoints at the same location.

For realistic 3D object generation, we must have im-
ages that contain this object from multiple viewpoints. To
achieve this, for each vehicle in PandaSet, we first obtain the
corresponding multi-view images from sequential frames
and different cameras. And for each image, we can also
get its respective pose information from the dataset. Next,
we employ PointRend [32] to generate object masks for
each image. We further filter out those low-quality images
where the objects inside are occluded. Specifically, we use

aggregated LiDAR points to help us identify the occlusion.
We also filter out those objects that only exists in several
images (< 10 images).

Eventually, for each select vehicle, we can get a group
of high-quality images from different viewpoints and their
respective pose information. We will use those images to
reconstruct high-fidelity 3D vehicle models.

3.2 EG3D

The first method we have tried is the Efficient Geometry-
aware 3D Generative Adversarial Networks (E ). The
pipeline of EG3D is shown in Figure 1..This framework
is mainly composed of 5 parts: a Style@N2-based fea-
ture generator, a novel tri-plane based feature decoder, a
neural volume render, a super-resolution module, and a
StyleGAN2 discriminator.

3.2.1 StyleGANZ2 feature generator.

In the feature generator, latent code and camera param-
eters are fed into a mapping network to modulate the
convolutional kernels of the 2D generative network. The
2D generative network produces a 256 x 256 x 96 feature
image, which is further sliced into three 32-channel feature
planes for the following tri-plane feature decoder.
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Fig. 5. Generated appearance on MVMC dataset.

3.2.2 Tri-plane feature decoder.

For each 3D querying location Q € R?, we will project this
query into three orthogonal feature planes and obtain the
three respective features from these planes. Then, the three
feature vectors are aggregated by summation, and passed
into a feature decoder that contains several MLP layers to
generate color and density for this 3D querying position.

3.2.3 Neural Volume render.

The neural volume render is following NeRF [30]. We render
a 1282 feature image and for each ray, we sample 96 3D
querying positions via importance sampling. The feature
image is then converted into a low-resolution RGB image.

3.2.4 Super-resolution module.

To obtain a high-resolution reconstructed image and main-
tain a manageable computational cost, we upsample the
low-resolution feature image and refine the features using
convolutional kernels modulated by the mapping network
in the StyleGAN?2 feature generator.

3.2.5 StyleGANZ discriminator.

To give a strong and pose-aware supervisory signal to the
reconstructed images, we apply GAN-based discriminative
losses on both the low-resolution and the high-resolution
images. A conditional label that contains camera intrinsics
and extrinsics is also fed into the discriminator for pose-
aware discrimination.

3.3 GET3D

The second method we have tried is the GET3D [19] model.
GET3D shares similar ideas with EG3D in terms of tri-
plane and GAN-based designs. The overall framework of

GET3D - CAD on MVMC

GET3D is shown in Figure 8. It mainly contains three parts:
geometry generator, texture generator, and differentiable
rendering.

3.3.1

The geometry generator maps a sample from the Gaussian
distribution to a mesh. It borrows the design of DMTet [15],
generates a signed distance field (SDF) from the latent code,
and extracts a 3D surface mesh from the SDE.

Geometry generator.

3.3.2 Texture generator.

The texture generator aims to produce a texture map con-
sistent with the output mesh. Similar to EG3D, we represent
the texture field as a tri-plane representation. Features of
each 3D querying point are extracted from three orthogonal
feature planes, and the features are then mapped to textures.

3.3.3 Differentiable rendering.

With the textured meshes produced by the geometry and
texture generator, a differentiable rasterizer is employed
to render the 3D textured mesh into a 2D silhouette and
an RGB image. Finally, GAN-based discrimination loss is
applied to the 2D silhouette and image as supervision.

3.4 Real world data adaptation
3.4.1 Limitations of existing approaches.

Both EG3D and GET3D rely on hundreds of noise-free
multi-view images and dense coverage on the camera view-
points to reconstruct a single 3D object. However, in real-
world settings, vehicles are normally captured by very
sparse viewpoints with few images. And the reconstruc-
tion process also suffers from localization and calibration
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Fig. 6. Generated appearance on Pandaset dataset.

errors. Hence both two methods cannot effectively handle
the in-the-wild 3D vehicle generation. Formally, the vertex
prediction V' can be written as

V = Vb + Votset @)

where Veoap denotes the coordinate for CAD template and
Votiset represents the predicted vertex deformation.

3.4.2 Better handle real-world data

Considering the above-mentioned difficulties, we propose
two techniques to resolve the in-the-wild 3D vehicle recon-
struction problem.

3.4.3 Introducing CAD priors.

Both EG3D and GET3D directly generate 3D vehicle geome-
try with only image-level supervisions. However, due to the
sparse viewpoints of images in the wild, the reconstructed
vehicles can be easily collapsed or have incomplete 3D
shapes. To overcome the limitations, we incorporate shape
priors from CAD models into the reconstruction process.
Specifically, we initialize the 3D vehicle meshes from a CAD
library. Then instead of directly generating 3D shapes, we
propose to learn the vertices’ movements based on the tem-
plate meshes for vehicle reconstruction. Compared to EG3D
and GET3D, this method can stabilize the reconstruction
process and produce more complete 3D shapes.

3.4.4 Shape-prior loss function.

Following [33], we adopt a shape prior function Lgpape to
regularize the 3D vehicle shapes. This loss function encour-

GET3D - CAD on Pandaset

ages the 3D shapes to be smooth. The formula is represented
as:

ﬁshapc — ﬁlap + Anormal‘cnormal + Acdgc‘ccdgc + /\sym‘csym
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2
where f € F and v € V are the face and vertex respectively,
N(f) and N(v) are the neighboring faces and vertices,
and Nr and Ng are the number of neighboring faces and
edges. The laplacian coordinate is defined as the difference
between the coordinates of each vertex and the center of
mass of its immediate neighbors:

1
51':Ui—f Z U/, 3)
L v’ €N (v;)

where N, denotes the number of immediate neighbors
(denoting by N(v;)) for vertex v;. Finally, Vg, denotes
the_flipped vertices according to the symmetry axis and
Ch&hfer represents symmetric Chamfer distance.

4 EXPERIMENTS

4.1 Datasets

We conduct experiments on the real world PandaSet [22]
and MVMC dataset [23]. Please see Figure 3 for some
examples of our post-processed samples.
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Fig. 8. Generated geometry for GET3D baseline.

4.1.1 PandaSet.

PandaSet is a dataset captured by the self-driving vehicle
platform equipped with 6 cameras (front, front-left, left,
front-right, right and back cameras) and two LiDARs (a 360°
mechanical spinning LiDAR and a solid forward-facing
LiDAR). The cameras and LiDARs are calibrated. PandaSet
annotates instance-level 3D bounding boxes for common
traffic participants in urban scenes, which can be used to
extract camera images and LiDAR sweeps for diverse set
of vehicles, motorcycles, etc. We are primarily interested in
learning vehicle generation model, since vehicles are the
most common actor in self-driving scenes. We use off-the-
shelf segmentation algorithm [32] to estimate the instance
mask for each vehicle.

4.1.2 Multi-view Marketplace (MVMC).

MVMC dataset is collected from online marketplace where
sellers listed their cars for sale. Each listing contains multi-
view images of the same vehicle. The are approximately 500
vehicles and each has ~ 10 views. The camera calibrations
are estimated from [23] and the segmentation masks are es-
timated from [32]. MVMC dataset contains diverse vehicle
assets under different illumination, weather condition, and
camera exposure settings.

4.2 Implementation details
4.2.1 EG3D.

We follow the official implementation'. We resize the input
image to 256 x 256. We found the discriminator is getting
too strong on real-world data and the generator cannot
learn from the discriminator and training will fail. And we
empirically found that using non-saturating GAN loss [1]
with a large R1 regularization (y =.40) can alleviate this
phenomenon. We use the efficient P@SB ray-box intersec-
tion algorithm to determine the entry point and exit point
for volume rendering given the instance boxes. And we use
64 stratified samples and 64 important samples for volume
rendering.

1. https:/ / github.com/NVlabs/eg3d

4.2.2 GET3D-CAD.

We build on top of the official repo® and follow the same
image resolution 256 x 256 as EG3D. We also set the R1 reg-
ulariation coefficient v = 40 for all experiments. Empirically,
we find that the vanilla GAN training is not stable without
adding CAD priors. The generator will crash occasionally
even the model already obtains reasonable results. After
adding CAD priors, we observe the training procedure
becomes more stable and faster in convergence.

4.3 Results

We show the generated meshes for GET3D and EG3D
in Fig. 4. We observe GET3D-CAD learns more smooth
and well-regularized surface, while EG3D learns more fine-
grained details but is more noisy. Both GET3D-CAD and
EG3D can obtain a varierty of vehicles including pickup
truck, sedan and SUV. Compared to vanilla GET3D (Fig. 8),
GET3D-CAD learns more complete shapes and less noisy
geometry thanks to CAD shape priors. In terms of photore-
alism metrics, we find the best FID (1k generated images) for
GET3D-CAD is 93.21 which is better than FID for GET3D is
101.92.

In Fig. 5 and Fig. 6, we show that both EG3D and
GET3D are able to produce diverse rendering results with
reasonable texture quality. However, in some generated
examples on Pandaset, the generated vehicle texture is not
complete (e.g., missing vehicle top) as the vehicle top is
rarely observed by data collection vehicle.

5 CONCLUSION

In this project, we focus on the large-scale 3D vehicle gener-
ation from real-world data. Firstly, we process two datasets
PandaSet [22] to get more than 6k images (300+ actors) with-
out occlusion (reasoned by shooting rays with aggregated
LiDAR points). We experiment two state-of-the-art 3D GAN
frameworks - EG3D [16] and GET3D [19]. We observe that
3D generation in more challenging in real world due to
different noise sources (imperfect masks, camera calibration
errors, etc) and sparse viewpoints. Moreover, GAN training
using real-world data is much more unstable and sensitive
to the parameter choices (e.g., R1 regularization coefficient).
To mitigate this issue, we propose to leverage the shape
priors from CAD models. Specifically, instead of extracting
meshes using DMTet, we extract features from triplane
feature grids and predict the per-vertex offset. We also
adopt some regularization terms to guarantee the surface

2. https:/ / github.com /nv-tlabs/GET3D



smoothness. With proper training schedule and CAD priors,
EG3D and GET3D can generate a variety of real vehicles
in the wild although the generation quality is worse than
using synthetic datasets. EG3D geometries contain more
fine-grained details and noise compared to GET3D.
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