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Abstract—This research project presents a novel method to segment a video into
mechanically coupled components based on the temporal frequency of the spatial phase
variations. We utilized a compact image pyramid representation called the Riesz pyramid
to perform Euler motion analysis over each pixel before performing segmentations. Our
segmentation results are able to isolate the vibrations based on both the frequency and
directions and outperform naive methods significantly on both noise and structural

metrics.

Index Terms—Computational Photography

1 INTRODUCTION

N industrial environments there are many
Isources of small vibrations that are invisible
to our eyes. Such vibrations can be caused
by misaligned bearings and other mechanical
issues and can fatigue the metal or loosen fas-
teners prematurely. Therefore it is imperative
to catch these vibrations early before long-term
tailures. The current standard method of detec-
tion involves the use of accelerometers, but it is
not practical to deploy such sensors all over the
infrastructures. Our proposed method is based
on local phase-based Eulerian motion amplifi-
cation, which allows us to diagnose these vi-
brations by analyzing subtle sub-pixel intensity
variations that are captured in video footage.
By segmenting the video into mechanically cou-
pled components, we can identify the source of
the vibrations.

2 RELATED WORK

Previous studies, such as those by [1] and [2][3],
have shown that local phase information can
be used to extract sub-pixel-level information

and create component image velocity fields.
These works have implemented Eulerian mo-
tion amplification techniques using complex-
valued steerable pyramids and Riesz Pyramids
to amplify the space-domain phases of each
pixel. These approaches have been successful
in amplifying the motions to the point where
they are detectable to the human eye.
However, these methods still require man-
ual processing by experts to isolate undesired
motions. Our proposed method aims to provide
an additional layer of automation by cluster-
ing and segmenting the different types of vi-
brations based on their phase and amplitude.
This will allow for more efficient and effective
detection of vibrations in industrial settings.

3 BACKGROUND

Our method is based on Riesz pyramids for mo-
tion extraction. We extend the previous works
by [3] for using Riesz pyramids for motion
amplification.



3.1 Gaussian and Laplacian Pyramids

Riesz pyramids are formed by taking the Riesz
transform of each level in the Laplacian pyra-
mid of the source image. The Laplacian is an
extension of the Gaussian pyramid with each
level containing a band-pass filtered and down-
sampled version of the original image [4].

Each layer of the Gaussian pyramid is form
by taking the last layer, blurring it and down
sampling it [4]. For the blurring, we use the
following Gaussian kernel
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For down sampling we simply drop all even
rows and even columns. Let this down sam-
pling operation be defined as d(I) where I is
the image.

For upsampling, we use the function j(/) to
inject zero-filled rows and columns every other
row/column such that it matches the original
size before downsampling. Then we perform a
convolution with the kernel as described above.
Let this be the function

u(l) = K = j(I)

Thus, the Gaussian pyramid can be de-
scribed as a sequence of images, Gy, G, ..., G.
Here G| is the original k x k image I, and we
generate new layers until the dimensions are
less than or equal to 8.

Each layer of the Gaussian pyramid can be
formulated as

Gi =K % d(Gl_l)

foriin 1...N.

The Laplacian pyramid is derived from the
Gaussian pyramid. It is also a sequence of im-
ages, Lo, Ly, ...,Ly. Fortin 0...N — 1,

I =i;— U(Gi+1)

and the final image Ly = Gy.

3.2 Riesz Transform

The Riesz transform is an extension of the tradi-
tional 1D Hilbert transform to two dimensions
[3].

The Hilbert transform in 1D on a signal u(?)
is defined by the following integral

H(u)(t) = %p.v. /_Z

where p.v. is the Cauchy principal value.

The Riesz transform is described in [5] with
the pair of transfer functions
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For a single spacial sub band (i.e. a layer
from the Laplacian pyramid), let the input be
I and the two filter responses be (R;, Ry). The
local amplitude A, local orientation 6, and local
phase ¢ can be defined as

I = Acos(¢), Ry = Asin(¢) cos(0), Ry = Asin(¢) sin(0)

As (Ry, Ry) forms a axis aligned vectors, the
Riesz pyramid can be redirected to an arbitu-
ary direction by using the standard rotational
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3.3 Riesz Approximation

The accurate Riesz transform is a pair of real
valued convolutions. To apply them to images,
the transform is approximated and discretized.
Due to the properties of image pyrmaids band-
passing the spacial signal, the majority of the
energy is concentrated around ||w|| = /2.
Thus, the Riesz transform can be described as
the pair of convolution kernels
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3.4 Temporal Filtering

The Riesz transformed images can be tempo-
rally filtered to isolate the specific frequencies
desired for an input image. Any Infinite Im-
pulse Response filter can be used for filtering.
In our implementation, we use the Butterworth
filter.



3.5 Denoising

The results from the approximate Riesz trans-
form is very noisy. Thus it is critical to perform
an amplitude weighted blurring step to denoise
it. The resulting filtered response can be defined
as B x ( A- Rfliltered)

Bx A

Where B is a Gaussian blur kernel, Rfl*red jg
the temporally filtered R, filter response, and A
is the local amplitude.

R‘tflurred _

4 METHODS

As a baseline comparison, we present two naive
methods based on directly processing the video
using temporal analysis. In addition to these
naive methods, we introduce our Riesz pyra-
mid phase based method.

4.1 Direct Method (Naive)

In this approach, we first preprocess the video
by performing a 3x3 sized Gaussian blur to
remove any high frequency sensor and pixel
noise. We then apply the further kernel on the
temporal axis to remove noise

i

Then we compute the per-pixel temporal
Fast Fourier Transform on the blurred images.

The amplitude of the Fast Fourier Transform
results are concatenated together and clustered
using K-Means. Each of the clusters are as-
signed a random color. The largest cluster in
terms of the number of pixels is assigned to
transparent.
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4.2 Peak Frequencies (Naive)

In this approach, we pre-process the video in
the same way as in the Direct method. We again
compute the per-pixel temporal Fast Fourier
Transform on the blurred images.

Here, we invert the the frequency to ampli-
tude function. Let

f(w) = A"
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be the function that maps the frequency w to
its corresponding amplitude A"”. We define the
function

A = w

to be the inverse function that maps the ampli-
tudes to the corresponding frequencies.

We then select the top k frequencies in terms
of amplitudes. Here, optimally k is selected
to be half the total number of Fast Fourier
Transform bins. Let W be the original set of
frequencies. We describe these frequencies as
the set

WP = {w e W;|{w e W; f(w') > f(w)}| <k}
Then, we take the image of WP under /1,
FHWoP)

to be the features that we perform Principle
Component Analysis on. The output is again
clustered using K-Means.

4.3 Phased Based Segmentation

We compute the temporally filtered and blurred
phase information as described in the back-
ground section.

We again compute the per pixel temporal
Fast Fourier Transform of the spacial phase. We
take the magnitude of the resulting imaginary
number to extract the temporal amplitude in-
formation. We denote these with RAMP RAMP,

To remove the impact of low amplitude
bins, we zero out the amplitudes below the
mean plus one standard deviation. That is,

RMP (2, ) (z,y) > c
0 otherwise

AMP-cutoff - RIIAMP
Rl (l‘ 9 y) -

where
¢ = mean(RMP) 1 std(RAMP),

As a further denoising step, a bilateral filter
is applied on the cut-offed amplitudes. We used
a pixel neighborhood of 10 and ¢ = 75 for
blurring.

The dimensionality is reduce by performing
Principle Component Analysis (PCA) on the



cut-offed data with the variables being the con-
catenated data. The number of dimensions for
PCA is determined as

x N
min (16, 121:161 Z I {Rﬁg/IP'Cutoff(i, k) > 0})
i=0

where [ is the indicator function, NV is the num-
ber of FFT bins, and K is the number of pixels.

The pixelwise PCA data is clustered using
the K-Means algorithm. Then the clusters are
each assigned a color for display.

5 RESULTS

The resulting segmentation of the three ap-
proaches mentioned on a guitar dataset can be
seen overlayed onto the video frame in figure
2. In figure 2, we are able to specifically see
the ability of our method to segment based on
varying frequencies. In this test, the footage is
tilmed in 600fps, and we set our low and high
cutoff frequencies as 70 and 180 Hz respec-
tively. We can see that the Riesz pyramid-based
segmentation is able to clearly distinguish the
region of each string, and the shadow from the
strings are also correctly identified. Compared
to the naive methods, the phase based method
are also able to distinguish another string that
is closer to the Nyquist limitation.

In Figure 3. we demonstrated the ability of the
model to distinguish between the directions of
the vibration vectors. The camera is filming at
1900 fps, and the cutoff frequencies are 70 and
86Hz. In the video, we can see that the drum
surface in not moving up and down uniformly,
but flexing side to side and out of phase. We are
able to display that information clearly in our
segmentation, and it implies that we can isolate
vibrations that have even the same frequency.
In Figure 4, we used footage from marble ma-
chine to show a practical usecase. We are able
to see the marbles’ path as it’s being dropped,
and the ratcheting mechanism has it's own
classifications.

6 ANALYSIS AND EVALUATION

Compared to other naive methods, the Riesz
pyramid-based Segmentation behaves far supe-
rior. The ongoing trouble we ran into is the lack

TABLE 1
metrics evaluation of different approaches

ENVE | SSim

naive_peak 0.403 | 0.510

drum | naive_kmean | 0.010 | 0.777
Riesz_kmean | 0.001 | 1.000
naive_peak 0.213 | 0.584

marble | naive_kmean | 0.022 | 0.507
Riesz_kmean | 0.001 | 1.000
naive_peak 0.062 | 0.364

guitar | naive_kmean | 0.015 | 0.758
Riesz_kmean | 0.001 | 1.000

of ground truth. Normally A expert would be
queried to label the dataset to create a ground
truth. Since it is impossible to calculate the
Peak to Noise Ratio without ground truth, we
had to resort to Fast Noise Variance Estimation
for noise metrics. On top of that, we used
structural similarities to compare the Structural
similarities, since a ground truth is impossible
to obtain, we had to resort to using the result
for phase-based segmentations as ground truth
for this metric. We can see, however, that the
segmentation performs well on the guitar and
drum dataset. The quantitative evaluations can
be seen in table 1. We can observe, both in
the FNVE metric and visually that the naive
method has significantly more noise, and the
segmentation on peak frequencies generally has
more noise but also retains potentially more
information. Segmentation on peak frequen-
cies performs better on Structural similarities
on the guitar dataset, but the naive segmen-
tation method performs better on drum and
marble datasets. The phase-based segmentation
method on the Riesz pyramid performs far
superior on both metrics, it eliminated all the
noise on disinterested regions and has smooth
and predictable boundaries for classifications.

7 DISCUSSION

Although our project has achieved the intended
targets, there are a few improvements we
would like to explore and possibly implement
in the future. As the segmentation is based
on Eulerian motion detection, and Eulerian



Motion Extraction with Riesz Pyramid
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Fig. 1. Phase-based segmentation pipeline

original video frame

heatmap of the frequencies

naive segmentation method
FNVE = 0.014632374770461575
SS = 0.7583975284855403

segmenting on peak frequencies
FNVE = 0.061994373478037
SS = 0.3641271242327614

segmenting on reisz pyramids
FNVE = 0.0010173224316263677
SS=1.0

Fig. 2. Output comparisons for guitar.avi

motion detection depends on individual pixel
intensity variations, the movement can only
be extracted near the edges of the image.
Therefore, the segmentation would also only be
near the edges. It is hard for classical imaging
techniques to fill in the mission information
on regions that lack textures. Therefore, a
learning-based segmentation method could

improve our existing implementations. As
previously mentioned, the lack of ground
truth is the reason behind not exploring said
approaches, but a synthetic dataset could open
up this possibility.

Another limitation that we experienced is the
sensitivity of our method to hyperparameter
tuning. We had to modify the low and high



original video frame

heatmap of the frequencies

naive segmentation method
FNVE = 0.01049601540274492
SS = 0.7770333579701982

segmenting on peak frequencies
FNVE = 0.04025572577970303

SS = 0.5103260127238826

segmenting on reisz pyramids
FNVE = 0.0013608073117664862
SS=1.0

Fig. 3. Output comparisons for drum.avi

original video frame

heatmap of the frequencies

naive segmentation method
FNVE = 0.022712881564562123
SS = 0.5071632810278528

segmenting on peak frequencies
FNVE = 0.02132847465116814
SS = 0.5843274305466213

segmenting on reisz pyramids
FNVE = 0.001705649413033696
SS=1.0

Fig. 4. Output comparisons for marble.mp4

cut-off frequencies, the PCA dimensions,
and the Kmean number of clusters based on
prior knowledge of the footage. A statistical
approach could be implemented to automate
this step away.

8 CONCLUSION

In Conclusion, We described an approach that
uses the phase information extracted from the
Riesz pyramid to segment a video based on
its temporal pixel intensity variations. Overall,
our project is extremely successful as we are
able to segment out sections of the video based
on the frequencies and the directions of their
vibration vectors clearly and outperform the



naive Fourier transform-based segmentations.
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