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Abstract—Halftoning, or dithering, is an image compression technique that has long been used in the print industry to reproduce tone
with a limited colour palette (e.g. black and white). Inverse halftoning, on the other hand, seeks to retrieve continuous-tone images from
halftone images. However, these algorithms can be energy intensive. Therefore, this paper seeks to determine which inverse halftoning
algorithms are most "worth” their computational cost. To this end, we evaluate six inverse halftoning techniques based on both their
reconstructed image quality (measured via PSNR and SSIM), and their computational efficiency (estimated by runtime). We find that
low-pass filtering, Mese and Vaidyanathan’s lookup table method [1], and Xia et. al’'s deep inverse technique [2] achieve the best ratio
of image quality to cost. However, there is a trade-off between reconstructed image quality and runtime. These findings can help guide
algorithm decisions for inverse halftoning methods which best suit project requirements.

Index Terms—Computational Photography, Inverse Halftoning, Dithering, Denoising

1 INTRODUCTION

ALFTONING, or dithering, is an image compression
Htechnique that reproduces tone with a limited colour
palette (e.g. black and white) via the distribution of halftone
dots [2], [3]. Although halftoning typically implies the use
of only two tones (e.g. black and white), a greater number
of tones can be used to create a compressed colour image,
or adjust the level of compression and detail. Dithering has
long been used in the print industry in order to cut down
on ink and cost [3]. Today, environmentally conscious web
designers are also turning to dithering to radically reduce
the energy consumption associated with accessing online
content [4].

Inverse halftoning looks to retrieve continuous-tone im-
ages from these halftoned images. Reverting halftone im-
ages to continuous-tone images is useful not only for the
recovery and preservation of historical printed media, but
for various image editing and processing that is not possible
on halftone images without serious image degradation [2],
[5]. Indeed, even simple manipulation — such as rotation by
an angle other than 90 degrees — or compression becomes
difficult on haltone images [5]. However, these inverse
processes can be energy intensive. It is therefore desirable
to find inverse halftoning techniques which generate high
quality reconstructed images that are also computationally
efficient. In this paper, we explore various techniques for
restoring dithered images to a continuous-tone image. In
particular, we evaluate the effectiveness of these techniques
given different levels of compression (the number of tones
used in our dithered images) as well as the computational
cost.

2 BACKGROUND AND RELATED WORK

Dithered images have a very low signal-to-noise ratio (SNR)
relative to their respective grayscale image due to their low
bit-depth [5]. There are several types of dithering methods,
which must be dealt with in different ways. Due to the pop-
ularity of Floyd-Steinberg error diffusion, we chose to focus

on error diffused halftones [2]. In error diffused halftones,
most noise lies in the high spatial frequencies. Therefore, the
simplest method for removing dither is applying a low-pass
filter. However, this results in a loss of edge information, and
is prone to blur and artifacts [2]. Inverse halftoning therefore
typically aims to remove this high frequency noise, known
as blue noise, while retaining the original image features
[5]. Some algorithms also seek to specifically enhance edge
preservation [6].

More complex techniques for inverse halftoning have
also been proposed [1], [2], [6], [7], [8]. One of the most
promising techniques is Mese and Vaidyanathan’s use of
a pre-computed lookup table (LUT) which improved both
reconstruction accuracy and efficiency in comparison to pre-
vious implementations using iterative filtering or projection
onto a convex set (POCS) [1]. More recently, neural networks
and deep learning have been applied to the problem of
inverse halftoning, with Xia and Wong achieving a state-
of-the-art performance using progressive residual learning
[2].

Xia et al. have also implemented a technique for re-
versible halftoning — via encoding information about the
colour and fine details of the original image in the distribu-
tion of the halftone dots in the dithered image — which
permits for the restorability of the original colour image
from a dithered image [6]. However, because the images we
wish to recover are typically not produced using reversible
halftoning, our focus in this project remains on methods for
retrieving images from traditional, non-reversible dithering.

3 THEORY
3.1 Dithering

We first consider the case of dithering for 2-tone (halftone)
images. We define a 2-tone image as an image whose pixel
values are constrained to two possible values: black or
white. Thus, each pixel value in a 2-tone image can be
encoded using a single bit: {0,1}. Given a continuous-tone
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Fig. 1: Results of Floyd-Steinberg dithering at different com-
pression levels (n-tones). If viewing digitally, zoom in to see
details.

image, dithering returns a 2-tone image that approximates
the continuous pixels values of the original image by the
distribution of black-and-white pixels. In practice, pixels of
continuous-tone images are stored as discrete values, such
as in GIF or PNG formats. We use 8-bit grayscale images
(256-tone) to approximate continuous-tone images. Dither-
ing — and inverse dithering — can be extended to colour
images, for example, by applying the operation across each
RGB channel separately.

There are many existing algorithms to perform the
dithering operation. In this project, we employ the widely-
used Floyd-Steinberg error diffusion [9] as our dithering
operation. In contrast to simple thresholding, error diffusion
introduces intentional noise to the halftone image to reduce
banding artifacts. Figure 1b a shows a 2-tone dithered image
obtained from a continuous-tone (8-bit grayscale) image.

We also implement the extension of dithering for general
n-tone images. Figures 1c and 1d provide an example of
4-tone and 8-tone dithered images, respectively. In 4-tone
images, each pixel can take on four discrete values and
can be encoded by 2 bits: {00,01, 10, 11}. In general, n-tone
images compress each pixel into log, n bits, with higher n
resulting in closer similarity to the continuous-tone case.

3.2 Inverse Halftoning

We now consider the inverse problem: given only a halftone
image, how can we recover the original continuous-tone
image? Intuitively, the density of pixel intensities in a given
region reflects the continuous-tone pixel values in that re-
gion. In this project, we examine two approaches specifically
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designed for the problem of inverse halftoning: lookup
tables and deep learning.

3.2.1 Lookup Table

The keys of a lookup table can describe halftone patterns
found in image patches. The corresponding values in the
LUT would then be the corresponding continuous-tone
pixel values. Using such a table, we can iterate through
each pixel of a halftone image, look at its neighbouring pixel
values, and then estimate the continuous-tone pixel value by
referencing the same neighbourhood pattern in our table.

We use the LUT method proposed in [1]. Prior to using
the LUT for inferencing, we must populate the values of the
table through a training step. Given a training set of halftone
images and their corresponding continuous-tone (grayscale)
ground truth images, the training step is as follows:

1)  For each halftone image and its ground truth image,
iterate through each pixel z; in the halftone image
and look at the local 4x4 image patch surrounding
;. We call this image patch a pattern P; € {0, 1}16.

2) For the key P; in the LUT, store the average cor-
responding ground truth pixel value LUT[P;] =

To use the lookup table for image reconstruction, we

iterate through each pixel z; in the halftone image and read
off the LUT values:

1) Look at the local 4x4 image patch surrounding z;.
This image patch is a pattern P; € {0, 1}1°.

2) Find the value in the LUT corresponding to the key
P,. Call this value LUT[P;].

3) If P, is in the LUT, set the reconstructed pixel &; =
LUT|Pj]

4) Otherwise, if P; is not in the LUT, we have a nonex-
istent pattern. In the case of a nonexistent pattern,
we set &; to be a Gaussian-weighted average of the
pixels surrounding ;.

Provided that the LUT is sufficiently trained, the occurrence
of nonexistent patterns should be infrequent, as the "typical’
patterns are encoded in the LUT during training.

3.2.2 Deep Learning

Deep Inverse Halftoning proposed in [2] is a state-of-the-
art method that uses a convolutional neural network (CNN)
trained on halftone images in order to perform continuous-
tone reconstruction. The model features two modules that
uniquely tackle the inverse halftoning problem: (i) a Content
Aggregation network to remove halftone patterns and re-
cover continuous-tone values, and (ii) a Detail Enhancement
network that restores lost features.

3.3 Image Denoising

The dithering operation, such as with Floyd-Steinberg er-
ror diffusion, can be viewed as the intentional addition
of noise to an image. Consequently, we can frame the
inverse halftoning problem as that of image denoising. We
apply four general image denoising approaches of interest:
low-pass filtering, bilateral filtering, alternating direction
method of multipliers (ADMM) with total variation (TV),
and ADMM with a denoising convolutional neural network
(DnCNN).
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Fig. 2: A 5x5 Gaussian blur kernel for low pass filtering.

3.3.1 Low-pass Filtering

Applying a low-pass filter to an image attenuates high-
frequency image details, such as sharp edges, effectively
blurring the image. In the spatial domain, one way to
achieve low-pass filtering is to convolve the image with
a Gaussian blur kernel, e.g., Fig. 2. These convolutions
can be performed efficiently as point-wise multiplication in
the Fourier domain. When applied to halftone images, the
low pass filter effectively calculates a Gaussian-weighted
spatial average of neighbouring pixel values to estimate a
continuous-tone value.

3.3.2 Bilateral Filter

The bilateral filter combines the spatial blurring of the
low-pass filter with an additional weighting function to
preserve image edges. The filter weight assigned to pixel
x to reconstruct pixel x; is given by

w(z, zi) o< f(|[1(z) = I(:) )G (| — z4]), @)

where G is a smoothing kernel, such as the Gaussian func-
tion depicted in Fig. 2. The function f is also a smoothing
kernel, except its value is calculated using the difference be-
tween I(z), the intensity of pixel z, and I(z;), the intensity
of pixel ;.

3.3.3 ADMM-TV

ADMM is a powerful iterative method for solving convex
optimization problems [10]. We can formulate our inverse
problem as

1
min 5||Aa:—b||§ + \U(z), 2)

where A is the image formation model, b is the observed
image, and V¥ is a regularization operator.

For inverse halftoning, we wish to recover a continuous-
tone image x from a dithered image b. We set A to be
identity and ¥ be a total variation prior, which penalizes
reconstructions z that have large absolute gradients.

There are two important parameters under our control
when using ADMM-TV. The first is A, which appears in
Equation (2) to control the strength of the TV prior. The sec-
ond is a penalty parameter p, which the ADMM approach
introduces to aid convergence.

3.3.4 ADMM-DnCNN

The optimization problem in Equation (2) can also be solved
using ADMM with a general denoising prior, such as non-
local means. Here, we consider a denoising convolutional
neural network to be used in iterations of ADMM. We use
the pre-trained DnCNN model from [11], [12].

TABLE 1: Low-pass Hyperparameter Search Results

Tone
2]4] 16
c[1]1]05

TABLE 2: Bilateral Filter Hyperparameter Search Results

Tone
2416
Ospatial 2 1 1
Ointensity 4 1 0.1

TABLE 3: ADMM-TV Hyperparameter Search Results

Tone
2 [ 4 [ 16
A ] 03 ]0075 | 001
p || 001 | 001 | 001

4 ANALYSIS AND EVALUATION
4.1 Dataset

The images used in our evaluation of inverse halftoning
techniques come from the BSDS300 dataset [13], which con-
sists of a training set of 200 images and a testing set of 100
images. For each image, we take its grayscale version as the
ground truth image. We then apply Floyd-Steinberg error
diffusion (Sec. 3.1) on the grayscale images to dither them,
creating 'noisy’ images. For the purposes of evaluation,
we generated image sets corresponding to three different
compression levels: 2-tone, 4-tone, and 16-tone.

4.2

Each technique is evaluated on a test set of 100 2-tone im-
ages, and their reconstructions are compared to the ground
truth. Furthermore, low-pass filtering, bilateral filtering,
ADMM-TV, and ADMM-DnCNN are also tested on test sets
of 100 4-tone images and 100 16-tone images. Results are
presented in Sec. 5.

Implementations are all done according to Sec. 3. For
our implementation of the low-pass filter, we used FFT to
perform the filtering operation in the Fourier domain. In
the spatial domain, the filter size is set to [90], where o is
the standard deviation of our Gaussian kernel. To determine
optimal values for the parameter o, we performed a search
(Appendix Fig. 7) over possible values. For the bilateral
filter, we use a Gaussian function for both the spatial and
intensity kernels. As such, there are two parameters ospqatial
and Ojntensity that we consider (Appendix Fig. 8).

In ADMM-TV, we optimized for the parameters A\ and
p. Heatmaps of the hyperparameter search are presented in
Appendix Fig. 9. In our application of ADMM-DnCNN, we
noticed improved reconstructed image quality if we modify
the o for the blur kernel in the z-update step of ADMM.
Our hyperparameter search (Appendix Fig. 10) is over opur
and p. Hyperparameter search results for each technique are
presented in Tables 1-4.

We implement the LUT algorithm introduced by Mese
et Al [1], training it on our set of 200 training images. This

Implementation of Inverse Halftoning



TABLE 4: ADMM-DnCNN Filter Hyperparameter Search
Results

Tone
2 [ 4 ]1e
obtur || 12 [ 05 [ 03
p 01 ] 05|02

implementation is restricted to 2-tone images. Beyond 2-
tone images, the size of the typical set of patterns rapidly
expands. Thus, a sufficiently trained LUT becomes increas-
ingly difficult to achieve, and its size becomes intractable. As
the occurrence of nonexistent patterns increases, the output
approaches that of a low-pass filter.

For the neural network model, we used the

pre-trained Deep Inverse model available at
https:/ / github.com/MenghanXia/InverseHalftoning.
Since this was pre-trained on halftone images only, its
application is also limited to that of halftone images. In our
testing, we observed that the reconstructed image quality
quickly decreases as we increase the number of tones. For
future investigations, we may consider retraining this model
for application beyond 2-tone images, and exploring the
effects of transfer learning for inverse dithering networks.

4.3 Image Quality and Runtime Evaluation

To compare image quality across our reconstructed images,
we use two metrics: the peak signal-to-noise-ratio (PSNR)
and the structural similarity index measure (SSIM) [14].
In image processing, PSNR is a standard measure for the
quality of image reconstructions. For our project, we are
particularly interested in perceived image quality, since the
dithering operation aims to improve upon the perceived
image quality. For example, consider a grayscale image and
a corresponding 2-tone image. The highest possible PSNR
would be achieved if the 2-tone image was generated by
applying a simple thresholding function to the grayscale
image — this minimizes the pixel-wise intensity difference.
Dithering, therefore, lowers the PSNR of the 2-tone image.
Nonetheless, the dithered image is often perceived to be
more similar to the original and of higher image quality.

In addition to image quality, we compare the compu-
tational cost of each technique. We measure the per-image
runtime of each technique in order to compare their com-
putational costs. Since the runtimes are heavily machine-
dependent, all reported runtimes in our results were mea-
sured on the same computer, a 2.40GHz Intel Core i7-
5500U CPU. These runtimes suffice to be used for relative
comparisons.

5 RESULTS

For each method — and where possible, each compression
level — we generated a new dataset of images, and calcu-
lated the average PSNR, SSIM, and runtime per image (see
Table 5).

5.1 Quantitative Results

In order to compare results, we generated two plots (Figures
3 and 4). Fig. 3 compares the quantitative image reconstruc-
tion quality of each method for each level of compression
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Fig. 3: Reconstructed Image Quality for each level of com-
pression (2-tone, 4-tone, 16-tone)

(2-tone, 4-tone, and 16-tone). Fig. 4 plots the performance of
each method in terms of both reconstructed image quality
and runtime.

As Fig. 3 illustrates, Deep Inverse method performed
the best in terms of reconstructed image quality for 2-tone
dithered images (see also Table 5). The lookup table also
performed well, and required half the runtime (Fig. 4, Table
5). ADMM-DnCNN achieved an average PSNR and SSIM
on par with the lookup table, but was very computationally
inefficient compared to the other methods tested (it was
therefore omitted from Fig. 4).

For 2-tone images, there is a clear tradeoff between
image reconstruction quality and computational cost. As
we see in Fig. 4, three methods in particular have a strong
image quality to runtime ratio: the deep learning technique,
the lookup table, and the low-pass filter. These appear to
share a linear relationship and demonstrate how directly
both PSNR and SSIM are related to computational cost. It
is not surprising that these methods perform well on 2-tone
images, seeing as these are methods that have been trained
for this purpose, or cited as strong solutions for inverse
halftoning [2], [6], [8]. The other more general denoising
methods we tested do not perform to the same standard for
2-tone images.

However, as we increase the number of tones (decrease
the level of compression), the reconstructed image quality
of the low-pass, bilateral, ADMM-TV, and ADMM-DnCNN
methods improves significantly (Fig. 3). In fact, for 16-tone
images, the SSIM for these techniques all converge to a value
above 0.95. Indeed, for lower compression levels, the low-
pass filter gives us strong results at a fraction of the runtime
of other methods (see Fig. 4). Moreover, the low-pass filter
(and the other general denoising techniques) do not require
retraining for dealing with a larger number of tones (unlike



TABLE 5: Quantitative Results

2-tone 4-tone 16-tone
Average | Average | Average | Average | Average | Average | Average | Average | Average
PSNR SSIM Runtime PSNR SSIM Runtime PSNR SSIM Runtime
(dB) () (dB) () (dB) ()
LP 26.188 0.816 0.059 27.335 0.875 0.066 33.777 0.964 0.059
Bilateral 24.596 0.771 5.016 28.048 0.886 5.934 34.911 0.97 5.523
ADMM 26.22 0.819 17.652 28.531 0.89 17.452 35.826 0.974 16.378
-V
ADMM 27.023 0.85 > 60 29.895 0.096 > 60 36.916 0.979 > 60
-DnCNN
Deep 29.90 0.910 7.65 = - & = E =
Inverse
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Fig. 4: Reconstructed Image Quality (PSNR and SSIM) vs.
runtime (s)

the deep learning and lookup table approaches), and can be
applied directly at the same computational cost.

5.2 Qualitative Results

In order to evaluate our qualitative results, we examine an
example output for each method tested (see Fig. 5, Fig. 6).
We chose an image which features both details and flat
areas that are prone to revealing artefacts. As we can see in
Figures 5 and 6, our qualitative results generally agree with
our quantitative data. The low-pass filter, bilateral filter,
ADMM-DnCNN, and ADMM-TV all produce compelling
results for dithered images with sixteen tones. Interest-
ingly, there is not much difference perceptually between the
ADMM-TV applied on four tones and sixteen tones.

For the methods applied on 2-tone dithered images, deep
inverse produces the best qualitative results. Although the
lookup table actually achieves a higher PSNR value (27.395
dB) for this image, the deep inverse algorithm performs
better in terms of SSIM, which lines up with our perceptual

evaluation of the images. ADMM-DnCNN also performs
well in terms of both perceived image quality and SSIM. All
the other methods retain a significant amount of artefacts
(including the lookup table). Although the lookup table
seems to remove a greater number of dithering artefacts
than the low-pass filter, it is not clear whether it significantly
out-performs the low-pass filter in terms of qualitative re-
sults. There is also little perceptible difference between the
low-pass filter and ADMM-TYV, and this is reflected in the
PSNR and SSIM.

6 DisScUSSION

These results are useful to help guide people in choosing
both inverse halftoning algorithms, and the level of com-
pression at which to dither images. In particular, Fig. 4 can
be used as a resource to determine which inverse halftoning
method is most appropriate given the demands. For exam-
ple, if your goal is to retrieve a high quality reconstructed
image, the deep learning approach might be best suited.
However, if you goal is to convert the image to a continuous
tone image for editing purposes before returning it to a
dithered image, applying a simple low-pass filter might be
sufficient. On the other hand, if you are seeking to dither
an image (e.g. to use on your a web page) and want a
low-cost way of retrieving the image (or expect to inverse
halftone frequently), it makes more sense to use produce a
higher tone image (e.g. sixteen tones) which can be quickly
retrieved using a low-pass filter.

Our findings can also inform future research, suggesting
that new inverse halftoning algorithms should focus on
achieving both higher quality images and faster runtimes
than the deep inverse technique, the lookup table, and the
low-pass filter (that is, they should fall above the line formed
by these three methods in Fig. 4).

Future work could also build on this project by using
alternative measures of the computational cost (such as
number of floating point operations), and considering the
cost of training each algorithm. We were also unable to
retrain the deep inverse algorithm given the time constrains
for this project. Future work could compare the performance
of this algorithm to other denoising techniques at lower
compression levels. Finally, additional algorithms and levels
of compression could be evaluated.
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Fig. 5: Reconstructed Image Low Pass Filter, Bilateral Filter,
ADMM-TV, and ADMM-DnCNN on 3 Compression Levels
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SSIM: 0.833
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SSIM: 0.904

(g) LUT (h) Deep Inverse
(2-tone) (2-tone)
PSNR: 27.395dB  PSNR: 26.929 dB
SSIM: 0.896 SSIM: 0.942

Fig. 6: Reconstructed Image from 2-tone Dithered for All
Methods

7 CONCLUSION

We have evaluated six inverse halftoning methods in terms
of both recovered image quality and computational cost. For
images with only two tones (black and white), there is a
clear tradeoff between quality and efficiency. The algorithms
which achieved the best quality (measured in terms of
PSNR or SSIM) to cost (taken as the runtime) ratio were
the low-pass filter, the lookup table, and Xia et al.’s deep
inverse technique [2]. However, performance for the other
denoising techniques — that is, bilateral filter, ADMM-TV,
and ADMM-DnCNN — improved significantly for lower
compression levels (4-tone and 16-tone). The low-pass filter
also performed very well on 16-tone images, and was by far



the most computationally efficient. This suggests that the
low-pass filter is the optimal solution for retrieving 16-tone
images. These observations (see Figures 3, 4), can help guide
individuals deciding which inverse halftoning method to
apply given their needs. They can also help determine
the ideal level of compression for dithered images, given
the frequency with which they will be retrieved, or the
purpose of their retrieval. Finally, these results may inform
the direction of future research by providing a threshold
for improvement that depends on both image quality and
computational cost.
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APPENDIX

Heatmaps for Hyperparameter Search
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