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Abstract—Reference-based Super-resolution (RefSR) approaches have recently been proposed to overcome the ill-posed problem of
image super-resolution by providing additional information from a high-resolution image. Multi-reference super-resolution extends this
approach by allowing more information to be incorporated. This paper proposes a 2-step-weighting posterior fusion approach to combine
the outputs of RefSR models with multiple references. Extensive experiments on the CUFED5 dataset demonstrate that the proposed
methods can be applied to various state-of-the-art RefSR models to get a consistent improvement in image quality.

Index Terms—Reference-based Super-Resolution, Image Fusion, Adaptive Weight Masking

1 INTRODUCTION

Single-image super-resolution (SISR) is a computer vi-
sion task that reconstructs a high-resolution (HR) image
from a low-resolution (LR) image. Typically, estimating a
high-resolution image from its low-resolution counterpart is
an ill-posed inverse problem [1], meaning that there are in-
finitely many solutions that satisfy the measurements. This
underdetermined nature of the problem is particularly pro-
nounced for images with abundant high-frequency details.
To reach an optimal solution to the inverse problem with
respect to certain criteria, additional regularization terms
need to be specified. However, no simple regularization
term can be specified to cover the characteristics of all kinds
of images, thus conventional SISR algorithms are usually
poorly performed.

Reference-based super-resolution (RefSR) methods ex-
plicitly exploit additional information from an external HR
reference image to enhance the SISR process. Intuitively,
sufficient information is encoded in a reference image that
contains the same content as that on the LR image to
facilitate texture restoration. However, a majority of current
RefSR models can only take one reference image, limiting
the amount of supplementary information to incorporate
into the super-resolution process.

To achieve multi-reference-based super-resolution
(MRefSR), two approaches are possible: it can either be
that multiple reference images are used as the initial
inputs to the model, or that the multiple outputs of
SRefSR using different reference images are fused to
combine the information. We observed that nowadays most
RefSR models aim to achieve better content alignment, both
spatially and semantically, between the input image and one
reference image. Because it is intuitively hard for additional
reference images to contribute to the alignment process, we
claim that the posterior fusion of multiple SRefSR outputs
would be a more natural way to combine the relevant
information from each reference image. Following this idea,
we proposed a two-step-weighting fusion scheme that can
be incorporated into a variety of existing SRefSR models to
achieve MRefSR and better-quality final SR images. Also,
our proposed method has a low computational cost and
allows for parallel computation for the super-resolution

process with multiple reference images.

The proposed posterior fusion method can be applied to
a wide range of applications. For example, in video game
graphic rendering, HR patches for each object in the scene
are readily available as the texture to be mapped, and they
can be used as reference images to perform MRefSR. This
approach would be applied to any video game and would
save huge computing resources compared to the state-of-
the-art NVIDIA DLSS, which trains separate SR neural
networks for each video game.

2 RELATED WORK
2.1 Single Image Super-Resolution

With the popularity of Convolutional Neural Networks
(CNN), learning-based approaches demonstrate signifi-
cantly better performances given an appropriate training
set. Early-stage CNN-based SISR models like SRCNN [2]
choose pixel-level reconstruction errors such as MSE and
MAE between the recovered HR image and ground truth
as loss functions to optimize. Furthermore, significant im-
provements can be made by optimizing the standard CNN
architecture. For instance, the approach EDSR [3] proposed
by Lim et al. applied the residual network architecture
to the SR task and achieved superior results. While these
algorithms tend to maximize the peak signal-to-noise ratio
(PSNR), they often result in smooth reconstruction lacking
high-frequency details and are perceptually unsatisfying. To
state the problem of SISR in another way, downsampling
an HR image is an irreversible compression process during
which much high-frequency information is lost. Instead of
trying to recover the lost information from nowhere, Ledig
et al. [4] adopt Generative Adversarial Networks (GAN) and
proposed SRGAN that generates “fake” texture details that
are visually realistic. While these results are perceptually
satisfying, texture details in these images are hallucinations
and are often different from those in the ground-truth im-
ages, resulting in PSNR degradation. This deficiency makes
the methods like SRGAN unsuited for fidelity-sensitive
applications like medical imaging. Additionally, pure GAN-
based SISR approaches fail to produce satisfying results on



test images with complicated components, often resulting in
distorted color lumps.

2.2 Single-Reference-based Super-Resolution

Zheng et al. [5] proposed an end-to-end approach, named
CrossNet, based on fully convolutional neural networks
that can perform spatial alignment between the reference
features and the LR features. One issue of this model is
that regions of the reference image that are irrelevant to
the input will degrade the performance. Motivated by this,
Shim et al. [6] proposed a robust RefSR model that is aware
of the relevancy of the reference image, leading to a more
robust result that outperforms SRGAN in terms of generat-
ing visually stratifying SR images while also achieving high
PSNR. More recently, Zhang et al. [7] proposed to use dual
zoomed observations (from a telephoto) as references and
apply self-supervised techniques to that. This is inspired by
multiple cameras in modern smartphones that are able to
collect dual-zoomed observations at the same time. While
this model performs well for scenes with repeated struc-
tural texture, it gives highly distorted outputs for common
scenarios.

2.3 Multi-Reference-based Super-Resolution

MRefSR has recently been proposed to extend the idea of
RefSR, and previous works in this field majorly focus on
designing novel neural network models such that they take
multiple reference images as the initial inputs. Yan et al. [8]
proposed a content-independent MRefSR model that builds
up a universal reference pool before doing predictions.
Given an input low-resolution image alone, this model finds
reference images whose textures are similar to each segmen-
tation of the input from its pool to help the reconstruction
process. A hierarchical attention-based sampling approach
is proposed by Pesavento et al. [9] to combine the features
of multiple reference images. While these models provide
a promising direction, the performance improvement com-
pared to SRefSR is still limited.

3 PROPOSED METHOD

The overview of our proposed multi-image RefSR pipeline
is shown in Fig. 1. This proposed method consists of two
major parts: 1) An image alignment and texture extraction
module, which can be any existing single-image RefSR
model, and 2) A image fusion module. The first module
takes an LR input image and an HR reference image and
tries to match the HR reference spatially and semantically
to the LR input and then uses the corresponding HR texture
in the reference image to get an HR version of the input
image. By feeding one input LR image and multiple ref-
erence images to this module, multiple SR output images
are obtained. The second module fuses these output images
into a single SR image by combining the best region of each
SR output, with the objective to improve image quality.
The fusion module consists of two steps, namely adap-
tive weight masking and globally reference-quality-based
weighted averaging.

3.1 Naive Fusion

Before introducing our proposed fusion method, let’s first
consider the simplest fusion scheme, which is just averaging
the intensity of pixels of each single-reference SR output.
That is, for every pixel position p in the SR image I;
generated by the RefSR module, the corresponding pixel
value of the fused image I is given by:

N
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where N is the total number of reference images and I(p)
is the intensity of the pixel at position p. The index i of SR
image I; is arranged such that the lowest indexed image
I, corresponds to the RefSR result with the most relevant
reference image.

By relevant we mean the content of the reference image is
similar to that of the input image. Take the CUFED5 dataset
that is adopted for evaluation by this paper as an example,
the leftmost image in Fig. 3 is the ground truth HR version of
the LR input image, while the other images are the reference
images whose relevance to Igr decreases from left to right.

It is intuitive that I; would have the best quality and
In would have the worst. As most of the previous single-
reference SR works take the I; as their final results, aver-
aging I; with the rest I; will degrade the quality of the
final fused image I. These claims are supported by our
experimental results.

3.2 Adaptive Weight Masking

Instead of naively averaging the single-reference SR image
I, as a whole, a more desirable fusion method would com-
bine the best of each SR image. As illustrated in Fig. 1, even
though I (the top one in the middle column) has the best
overall quality, the I3 has sharper character reconstruction
on the selected region. To achieve this, an adaptive weight
mask W;, whose dimension is the same as SR image I;,
is computed. It gives higher weights to pixels in regions
with better-quality reconstruction and each pixel value of
the fused image I is given by:
N
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Ideally, W;(p) should measure how close a pixel is to the
ground-truth image, but this information is not available
in real RefSR scenarios. What is readily available is the LR
input image L;npy: itself.

To compute W, (p), I, is first downsampled to have the
same dimension as the input image, denoted by D(I;). The
idea is that, for an ideal reconstruction of the input image,
the downsampled version of it would be exactly the same as
the input image. Therefore the difference between the pixel
intensities of D(I;) and IL;yp.+ would be a good proximity to
the difference between I; and Igr. Specifically, W; is given
by:

- 1

I(p)

Wi = U(exp (—B(D(Li) — Linpur)?)) ©)

where U denotes bicubic upsampling and exp is element-
wise exponential. 3 is a parameter controlling how much
the discrepancy in pixel intensities is penalized.
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Fig. 1. Our proposed multi-image RefSR pipeline

3.3 Global Reference-Quality-based Weight

While the Adaptive Weight Masking scheme works reason-
ably well in cases for severely distorted regions in I;, it is
insensitive to small distortions in I;, which is crucial in fine
detail recovery. To see why this is happening, consider the
most naive super-resolution result of L;y,;, that is, its bicubic
interpolated upsampled version. Despite having the worst
SR quality, this image would be yet another optimal solution
with maximized W since its bicubic downsampled version
would be exactly the same as the L.

To overcome this problem, an measurement to encourage
fidelity is needed. One might consider Natural Image Prior
[10] as a way to force fine details. However, we have ob-
served the deficiencies in the RefSR could be both blurring
lumps and noise high-frequency mosaic, making Natural
Image Prior noneffective. Instead, we took an indirect mea-
surement of the fidelity of I;. As shown in Fig. 2, the black-
and-white figure is the binary weight mask computed by
finding the maximum value of W;(p) for each pixel across
all RefSR results I;, so the pixel intensity each the binary
weight mask is given by:

1 ,i=argmax W,(p)

0 ,otherwise

It can be observed from Fig. 2 that the total area of the white
region in the binary weight mask figure can be an indicator
of how relevant the underlying reference image is to the
input image. Intuitively, the better the underlying reference,
the better the texture quality in the SR results. Therefore, the
sum of the binary weight mask is adopted as a global weight
for I in the fusion process. This global weight is computed
by:

w; = exp <5g > W, (p)> ©)
p

And the fused image is given by:

1 ~
Ifused = ﬂ Z w’LI’L (6)
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Fusion Module

where I, is the i'" SR image after applied Adaptive Weight
Masking, and 3, is a parameter controlling how much pri-
ority is given to the I; with the best underlying referencing
image.

Fig. 2. Binary weight mask computed from RefSR results

4 EXPERIMENTAL RESULTS
4.1 Dataset and Evaluation Metrics

GT Ref-XH Ref-H Ref-M Ref-L Ref-XL

Fig. 3. Sample images from the test set of CUFED5

Testing Dataset. The test set of CUFEDS [11] is used as
the testing dataset because it provides multiple reference
images for each low-resolution image. (Fig. 3). The CUFED5
test set has 126 HR input images and each has 5 HR
reference images with different similarity levels. The input
LR images for the evaluation below are constructed by 4x
bicubic downsampling from the ground-truth HR images.

Evaluation Metrics. The quantitative experiments adopt
PSNR and SSIM (structural similarity) [12] on the Y channel



of the YCrCb space as evaluation metrics. In case that
different RefSR modules generate images with different
dimensions, the cropping/padding/interpolation scheme in
the fusion module is chosen to be the same as that in the
RefSR modules so that the evaluation results are consistent.

4.2 Qualitative Comparisons

Table 1 summarizes the qualitative comparison with the
state-of-the-arts. We applied our method on C?-Matching
[13] and AMSA [14] and compared the results with the
original ones. Also the result of ESRGAN [15] is included
as a representation of SISR results. It can be observed that
our method does a certain level of visual quality improve-
ment upon the original work, especially in the case of C?-
Matching, where a denoising bonus is applied upon super-
resolution.

4.3 Quantitative Evaluation

Overall Comparisons. Table 4.3 shows the quantitative
comparison of the performance of a variety of super-
resolution methods. We applied the proposed method to C-
Matching [13] and AMSA [14], and compared and results
with the original works. We also include the results of rep-
resentative models of SISR and RefSR, which are evaluated
on the same dataset as outs. For SISR methods, we include
SRCNN [2], EDSR [3], RCAN [16], SRGAN [4], ENet [17],
ESRGAN [15] and RankSRGAN [18]. For RefSR methods,
we include CrossNet [5], SRNTT [11], TTSR [19], SSEN [13],
E2ENT? [20] and CIMR [8].

We can see that our method outperforms all SISR and
Ref SR models. In particular, C2-Matching and AMSA have
shown improvement after integrating with the pipeline.
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Fig. 4. Quantitative evaluation by applying the proposed method to C2-
Matching and AMSA

Evaluate Adaptive Weight Masking. We applied the pro-
posed method to C2-Matching and AMSA to perform quan-
titative evaluations. To analyze the effectiveness of Adaptive
Weight Masking, we fixed 3, to be 0, which essentially
disables the effect of the Global Reference-Quality-based
weight. Fig. 4 (a) and (d) shows how the PSNR_Y/SSIM
changes as (3 varies from 0 to 810. Note that when 5 = 0,
the method degrades to Naive Fusion. It can be observed
that both PSNR_Y and SSIM get better as 3 increase, that is,
as the distorted pixels are penalized more and more. While
PSNR_Y begins to decrease as 3 passes the optimal value,
SSIM keeps increasing and then decreases mildly com-
pared with PSNR_Y. While the increased PSNR_Y/SSIM

.

(a) PSNR_Y for AMSA with varying parameter (b) SSIM for AMSA with varying parameter

Fig. 5. The PSNR_Y and SSIM heatmap with varied parameters 3 and
By

validates the effectiveness of Adaptive Weight Masking, it
should be noticed that the PSNR_Y/SSIM is worse than the
27.16/0.805 (see Table 4.3) achieved by C?-Matching and
xx achieved by AMSA using the single most relevant refer-
ence image. That is due to the Adaptive Weight Masking’s
insensitiveness to relatively small distortions in SR results,
as stated in Sec. 3.3.

Evaluate Global Reference-Quality-based Weight. As
shown in Fig. 4 (b) and (e), as 3, increases from 0 to 8 the
PSNR_Y/SSIM of both C2?-Matching and AMSA first arise
then plateau, given the condition that 3 is fixed to 0. When
By = 0 the process is equivalent to Naive Fusion while
Bg — oo would be the case of using the single best SRefSR
result alone. This trend shows that there is indeed additional
valuable information from the sub-optimal SRefSR results,
and even a simple trick as weighted averaging would im-
prove the image quality with a properly chosen /3.
Evaluate the Combined Weighting Method Fig. 5 how the
metrics values changes with varied 3 and 3,4, and only
the results for ASMA are demonstrated since the evalua-
tion with C2-Matching produce similar results. It can be
observed there is a sharp change when 3 changes from 0
to 30, which is consistent with the previous observation on
the quick increase in metrics values in Fig. 4 (a) and (d).
Evaluate the Number of Images Fused. In Fig. 4 (c) and
(f), we cumulatively fuse more and more RefSR images to
and show the resulting image’s PSNR_Y /SSIM. Notice that
the order of fusion is chosen such that the best-quality RefSR
image is taken to be fused with RefSR images that are of less
and less quality. It can be shown that our proposed method
is resistant to imperfect RefSR images since the PSNR_Y and
SSIM starts to decrease only after the fourth RefSR image is
fused and PSNR_Y decrease mildly.

It is noteworthy that the evaluation above is done separately
with two different state-of-the-art SRefSR models, namely
CQ-MatChing and AMSA, and a consistent behavior is ob-
served. Therefore we claim that the proposed method has
the potential to be incorporated into a variety of SRefSR
pipelines to get a performance improvement.

4.4 Case Study with SelfDLSR

The models in the previous experiment use HR references to
generate super-resolution images, so we have also studied
the effectiveness of this super-resolution pipeline with other
types of references. In particular, we experimented with Self-
DZSR which uses telephotos (zoom-in images) as references.
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TABLE 1
Qualitative results

TABLE 2
Evaluation of the models on PSNR_Y and SSIM

I Model | PSNR/SSIM

SRCNN 25.33/0.745

EDSR 25.93/0.777

RCAN 26.06/0.769

SISR SRGAN 24.40/0.702
ENet 24.24/0.695

ESRGAN 21.90/0.633

RankSRGAN 22.31/0.635

CrossNet [5] 25.48/0.764

SRNTT 25.61/0.764

TTSR 25.53/0.765

Ref SR SSEN 25.35/0.742
E2ENT? 24.01/0.705

CIMR 26.16/0.781

C2-Matching 27.16/0.805

AMSA 27.31/0.809

Ours (with C2-Matching) | 27.29/0.806

Ours (with AMSA) 27.56/0.825

Dataset Preparation. While the CUFED5 test set can be
directly adopted for AMSR and C?-matching, it does not
contain telephotos that are required for the DZSR model.
Therefore, an image processing pipeline is constructed to
generate short-focus and telephotos from CUFEDS5. This

takes the ground truth high-resolution images alone and
outputs the short-focus low-resolution images by 4x bicubic
downsampling, the same as the previous experiment with
C?-Matching and AMSA. It also renders telephotos by
cropping the high-resolution images to simulate the effect of
zooming in. This pipeline is flexible because it can support
any image dataset and different resize factors for more
comprehensive comparisons.
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Fig. 6. Qualitative Comparisons by using different reference images
(telephoto) for SelfDZSR. The leftmost one is the fused image while the
right 5 are outputs from individual references.

Qualitative Comparisons. Figure 6 shows the qualitative
results. When center reference (telephoto) are used, we can
see that the resulting images show obvious artifacts in
the surrounding of the output images. However, when we
use the telephotos taken from the corners of short-focused
images, the center part of the super-resolution images seems
to be replaced by the reference, largely deviating from the
ground truth. This is different from what we expected as the
reference patches used during training are not restricted to



the center but at randomized positions with simple augmen-
tation (flipping and 90° rotation), making it resilient to the
displacement of reference. Note that the surrounding parts
are smoother without the artifacts. Nonetheless, the fused
output (the leftmost one) can combine the smoothness from
non-center references and the overall structure with center
references, showing significant improvement from each of
the single-reference super-resolution outputs.
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Fig. 7. Binary weight masks from Global Reference-Quality-based
Weight by using different reference images (telephoto) for SelfDZSR.

Weight Analysis. Figure 7 illustrates the binary weight
masks for different references respectively, we can see that
in the first reference (using a center telephoto), most of the
pixels in the center part have the highest weights across
references, showing that the Adaptive Weight Masking step
in the pipeline can identify the distortion in center parts
and put lower weights. We also discover that some of the
pixels in the surrounding area are the highest in non-center
reference (the second to fifth in the figure), showing that the
step can recognize the artifacts in the surroundings. There-
fore, the fusion module can indeed combine the smoothness
from non-center references and the overall structure with
center references.

5 DiscuUssSION

To improve our image fusion module, we will try to explore
better ways to assign pixel and image weights for Adaptive
Weight Masking and Global Reference-Quality-base. In par-
ticular, we will adopt other priors that combine the sharp
region of each image to provide a more fine-grained result.
This can be gradient-based methods such as Poisson image
processing and pyramid-based methods such as Gaussian
pyramid.

We can also adopt neural network models for image
fusion such that the prior knowledge of what a “natural
image” is learned by the neural network to select the best-
reconstructed regions in each RefSR image. This approach
has the potential to significantly outperform our simple
global reference-quality-based weighting strategy.
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