Monocular Shape Sensing for Continuum Robot
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Abstract—Continuum Robots have flexible structures that allow them to access confined spaces and complex environments. To
control continuum robots, accurate and real-time shape sensing is essential. Currently, the visual-based method has the most potential
for 3D shape estimation given its ability to provide accurate results; however, the majority of the visual-based approaches for continuum
robots are not suitable in real-life scenarios due to their dependency on markers or multiple cameras. To address this, we propose a
robust and efficient monocular-based shape sensing model that does not rely on simplifying assumptions. Our model consists of a
shared encoder and two decoders for predicting the robot’s centerline coordinates and its corresponding length from the base
respectively. We benchmark the proposed approach against two baselines in a simulated dataset and show it outperforms both

baselines by a large margin.

Index Terms—Continuum Robot, 3D Shape Sensing, Robot Vision

1 INTRODUCTION

Continuum Robot, as illustrated in Fig 1, refers to the
subcategory of robotic manipulators that do not contain
rigid links or identifiable joints. Due to their narrow curvi-
linear shape, structural compliance, and miniaturization
capability, they have been researched for applications in-
volving cluttered environments, such as minimally invasive
surgery [1], non-destructive inspection [2], and space/sea
exploration [3], [4].

Performing precise motion control of continuum robots
requires real-time and accurate shape sensing. A direct way
to calculate the shape of the continuum robot is to use a
model-based method. However, the model-based method is
sensitive to unknown external loads which leads to poor
performance [5]. Another way to estimate the shape of
the robot is to use additional sensors. Song and Wu et al.
estimate the shape of the continuum robots using multiple
electromagnetic sensors [6], [7]. The electromagnetic sensors
are able to provide accurate position and direction infor-
mation with respect to the global frame but the sensors
take up valuable space in the robots and pose challenges
to miniaturization.

Thus, we proposed a visual-based method for contin-
uum robot shape sensing. Additionally, we approach visual
shape estimation with potential application scenarios in
mind — image from a single viewpoint at a time (monocular
input) is almost always achievable (e.g., X-ray), but a stereo
setup or depth camera may not be available. The purpose
of the project is to investigate the feasibility of monocular
visual shape estimation for a continuum robot in terms of
accuracy and computation time. If successful, the method
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Fig. 1: Tendon-driven continuum robot prototype with three
extensible sections at different lengths [8].

would efficiently close the control loop thus improving
performance for many continuum robot applications.

2 RELATED WORK
2.1

Reconstructing 3D objects from a single viewpoint is known
to be both challenging and ambiguous. To tackle this prob-
lem, early studies use an object shape prior to match the
projected object silhouette with image cues [9]. These ap-
proaches are limited by the strong assumptions on lighting
conditions and the use of a simplified model for surface
reflectance [9].

In more recent attempts, learning-based approaches have
become more popular as a result of the development of deep
learning architectures. Fan et al. proposed a conditional
generative model that can predict the 3D point cloud of
an object from a single input image [10]. The model first
conducts the encoding-decoding operations recurrently to
learn surface details. Then the information gets passed into
two parallel prediction branches - a fully-connected branch
and a deconvolution branch. The fully-connected branch
allows the model to describe intricate structures while the
deconvolution branch is able to learn large smooth surfaces.

Monocular 3D Object Reconstruction
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Fig. 2: Overview of the Framework

The outputs of the two branches are later merged together
to form the final set of points [10].

In another research, Wang et al. designed an end-to-
end deep learning architecture that produces a 3D shape
in triangular mesh from a single color image [11]. The net-
work, Pixel2Mesh, uses a graph-based convolutional neural
network to represent 3D mesh and progressively deforms
an ellipsoid to produce correct geometry. Compared to state-
of-the-art approaches, Pixel2Mesh achieves higher 3D shape
estimation accuracy and produces mesh models with better
details [11].

2.2 3D Reconstruction of Continuum Robot

For 3D shape reconstruction of continuum robots, vision-
based shape-sensing techniques have been validated to
provide more direct and accurate measurement than solely
using kinematic modeling [12].

One method is to first extract the robot/needle curve
through segmentation and then estimate the 3D points for
shape reconstruction using epipolar geometry analysis [13].
Burgner et al. achieved a mean error of 0.473 + 0.353 mm on
an anthropomorphic liver phantom with tumors and vessels
[13]. Another method proposed by Dalvand et al. uses a
stereo vision system and a 3D reconstruction algorithm
based on the closed-form analytical solution for quadratic
curve reconstruction in 3D space [14]. This method achieves
real-time reconstruction of cardiac cathetersa with a max-
imum measurement error of 0.5 mm for the tip position
and length and 0.5 degrees for the bending and orientation
angles [14]. Croom et al. also uses a stereo vision based
algorithm that employs self-organizing maps to triangulate
3D backbone curves from segmented 2D stereo images [15].
By avoiding the formation of 3D point cloud, the method
is more efficient, and achieves a reconstruction accuracy of
1.53 mm at 4.0 Hz. [15].

While some of the results from previous research are
promising in terms of accuracy, their suitability for real-
life application is limited by slow speed, the requirement
of multiple cameras or input images, and the dependency
on tip- or body-mounted markers [14]. Additionally, there

is a lack of common hardware or software benchmarks in
the field, and some approaches are application specific or
use simplifying assumptions to achieve good performance.

3 METHOD

We start by presenting the problem setup and then explain
the proposed approach in detail. At a high level, we modify
the UNet [16] architecture to have two decoders. Individu-
ally they predict 3D points on the centerline and its relative
position on the robot. We apply the least-squares method
to obtain a parametrized 3D curve describing the robot
centerline.

3.1

Assume we are given an RGB image of the robot, Irgp €
RE*WX3 and a binary occupancy mask of the robot, O €
BZ*W_ The goal is to find the position of the robot in 3D,
parameterized by the 3D coordinates of M evenly-spaced
points on the centerline of the robot, denoted as P, € RMx3,

The occupancy mask is assumed to come from an up-
stream segmentation module. The segmentation technique
is highly dependent on the specific applications, so we will
not include it in this work.

Problem Formulation

3.2 Network Architecture

We propose a network architecture that is based on UNet
[16] but with two decoders. As depicted in Fig. 2, the
network takes as input the UVRGB image of the robot
constructed by appending the horizontal and vertical index
(u,v) to the RGB value of each pixel. The encoder portion
first applies repeated 3 x 3 convolution with batch nor-
malization and a rectified linear unit (ReLU) for an initial
feature map with 64 channels. Afterward, there are 4 down-
sampling steps using 2 x 2 max pooling operation with stride
2, followed by repeated convolutions described above to
double the number of feature channels at each step. This
brings the input image with dimension 512 x 512 x 5 to
a feature map of size 64 x 64 x 1024. The two decoders



have the reverse structure and use bilinear interpolation
to up-sample the feature maps. The encoder feature map
before every down-sampling step is also concatenated to the
feature map after every up-sampling step. In the last step,
we use 1 x 1 convolution to output the final features for each
pixel.

We use the binary occupancy mask to filter the outputs
to obtain P,. € RV*3 and P, € R" from the two decoders
respectively, where NN is the number of pixels belong to
the robot. Pmyz is a point cloud of the predicted robot’s
centerline. Intuitively, the first decoder is learning some
depth information for each pixel, as well as the camera
model to project that depth information into the robot’s
frame of reference. 15s is a parameterization variable ranging
from 0 to 1 for each pixel. The variable represents each
pixel’s relative location with respect to the robot — 0 means
it’s at the robot’s base and 1 means it’s at the robot’s tip.

Since the two decoders output a 3D point and a pre-
dicted parametrization for each pixel, we can conveniently
apply the least-squares method to fit a 3D polynomial curve
with arbitrary degrees.

3.3 Supervision

Using the depth image Lyeptn € RE*W and robot centerline

points P, € RM*3, we construct the ground truth point
cloud P,,, € RV*3 and P, € R¥ as follows. Points in P,
are ordered and equally spaced along the robot, so every
point corresponds to a ground truth parametrization:
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For every point in the binary occupancy mask, we use the
invertible camera projection matrix C € R*** and depth
image to obtain the 3D point cloud corresponding to each
pixel.
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where (u,v) is the index of the pixel on the image and d is
its corresponding depth value from Igep¢s. This gives us a
ground truth point cloud on the robot surface captured by
the camera, denoted Py face € RY*3. For each point on
the surface, we find the closest centerline point coordinates
and the parameterization values, P,,. € RV*3 and P, €
RY, respectively. We supervise the network using the loss
function depicted as follows.

L= 51”szz - nyz”? + BQHPz - Pz”?

4 EXPERIMENT

We train and evaluate the proposed model on a custom
dataset collected from simulation. Common metrics used
in continuum robot research are adopted to measure the
accuracy of shape sensing and tip tracking. We then present
the baselines adopted as well as the experimental settings.

(a) RGB image (b) depth image

Fig. 3: Sample Image Data from Custom Dataset

4.1 Dataset

We collected a custom dataset using an existing simulator.
The simulated tendon-driven continuum robot is 280 mm
in length and 10 mm in radius with a protective sleeve.
Randomly sampled robot configurations are rendered with
the Visualization Toolkit (VTK), where we save 512 x 512
RGB and depth images (Fig. 3) along with camera configu-
ration and ground truth robot shape. The dataset contains
50,000 robot configurations. Texture was added to make the
dataset more realistic. 80% of the dataset are for training and
validation, and the remaining 20% are reserved for testing.

4.2 Metrics

Shape sensing for continuum robots has typically been
evaluated in terms of mean error of robot shape (MERS)
and mean error of tip tracking (METE) [17]. Although they
have been calculated differently across literature, we define
MERS to be the average Euclidean distance between the
predicted set of evenly-spaced points, P, € RM*3, and
corresponding ground truth points, P,, € RM*3, across
different configurations in the robot’s workspace.

M
1 z
MERS = M Z”Pr,j - Pr,j||2
j=1

We also constraint M > 10 so the points are representative
of the robot’s overall shape. METE is calculated in the same
way but only accounting for the tip position.

METE = ||P, x — P, ]2

We evaluate our method against these two metrics with
and without external loading to better reflect application
scenarios.

4.3 Baselines

We use a combination of UNet [16] and PointNet [18] as
the first baseline where a captured image of the robot is
processed by the UNet to obtain per-pixel 3D projection.
The PointNet then takes the 3D point cloud of the robot and
outputs the coordinates of the points on the robot centerline.
Further, we combine UNet with a 6-degree polynomial
fitting algorithm for the second baseline. After decoding
per-pixel centerline coordinates from the UNet, the curve
fitting algorithm fits three 2-dimensional curves on x, y, and
z axis with respect to the curve length. The curve length is
approximated using the distance from the robot base.



UN + PN

0.25

0.20
0.15
0.10
0.05
0.00

UN + PF

Proposed

=0. 038
=0.02,
%oy
X —8 005

Tooo 000

0.08

0.25
0.20
015 Z
0.10
0.05
0.00

Fig. 4: Qualitative comparison of the proposed approach against the two baselines. UN: Unet. PN: PointNet. PF: polynomial
fitting. red curve: network output. green curve: ground truth robot centerline.

4.4 Experimental Setup

We trained the network end-to-end for 50 epochs using
AdamW optimizer with learning rate of 0.003. A weight
decay of 10~ was used. The model was trained on a single
NVIDIA RTX2080Ti with a batch size of 4 per GPU. 3; and
B2 were both set to 1.

5 RESULTS

In this section, we present the quantitative and qualitative
results of the proposed approach on the simulated dataset
and provide an ablation analysis on various components of
the model.

5.1

We summarize the quantitative results of the model on the
test split of the simulated dataset in TABLE 1. Compare to
the two baselines, our approach obtains significantly lower
errors on both MERS and METE while is still able to run in
real-time.

Quantitative Results

Model MERS METE FPS

UNet [16] + PointNet [18] 16.22 3447  26.43
UNet [16] + Polynomial Fitting 15.74 15.94 26.81
Ours 1.74 3.09 20.34

TABLE 1: Test set result on the simulated dataset. Metrics
are in terms of mm. FPS are in terms of Hz.

5.2 Qualitative Results

We present sample model outputs visually in Fig. 4. The
first baseline (Row 1: UN + PN) regresses M evenly-spaced
points on the robot centerline directly, yet its predictions are
prone to errors. Continuum robots do not have clear joints
or key points visually. Thus, it is quite challenging to regress
coordinates of desired locations on the robot directly. On the
other hand, using the combination of UNet and polynomial
fitting (Row 2), the model is able to predict reasonably well
for the easier poses. However, it could not handle cases of
complex robot configurations (Col 4). Clearly, the proposed
approach (Row 3) yields the best results.

5.3 Ablation Analysis

We conduct ablation studies to analyze how each of the
components designed contributes to the final results. Specif-
ically, we study how multiple decoders could help the
network in learning. M1 and M2 in TABLE 2 correspond
to the two baselines presented earlier for easier referencing.
Moving from M2 to M3, we experiment separating the
centerline coordinates learning by first decoding the coor-
dinates on the robot surface and then regressing the offset
towards the center. However, we see the error increases
when separating this task into two sub-tasks thus decide
to keep the network compact. Additionally, comparing M2
and M7 (likewise for comparing M3 and M6), we see a
drastic decrease in both MERS and METE when adding
an extra decoder to learn the per-pixel length of the point
from the robot base. This value is then used for curve fitting
to replace the Euclidean distance from the base used by M2.



Note that results of M7 slightly differs from TABLE 1 due
to different polynomial degrees in curve fitting. We use 4-
th order polynomial fitting to compile the best results in
TABLE 1 but keep the setting the same as baseline (6-th
order) in TABLE 2 for fair comparison. We present in depth
how the polynomial degree affects the results in TABLE 3.

Architecture Backbone Decoders Fitting Metrics

UN RN SN |D1 D2 D3 D4 | PN PF | MERS METE FPS

@ M1 v v v 16.22 34.47 26.43
Baseline

M2 v v v 15.74 15.94 26.81

M3 v v v v 15.93 17.45 20.12

Ablations M4 v v v v 15.40 16.59 11.01

M5 v v v v 15.73 17.54 15.94

Meé v v v v v 1.79 3.48 15.87

Proposed M7 | v v v v 1.76 3.29 2034

TABLE 2: Ablation study of the proposed components vs
baseline. UN: UNet [16], RN: ResNet [19], SN: SalsaNext
[20], D1: Decoding per-pixel xyz coordinates on surface, D2:
Decoding per-pixel zyz coordinates on centerline, D3: De-
coding per-pixel Azyz offset from surface to centerline, D4:
Decoding per-pixel length from robot base, PN: PointNet,
PF: Polynomial fitting with degree of 6. FPS: Frames per
second measured using Intel(R) Xeon(R) CPU E5-2687W v4
and NVIDIA RTX 2080Ti. Metrics are presented in mm.

Further, we show how changing the backbone of the
network affects the model performance. We conduct exper-
iments on changing the backbone from the Vanilla UNet
(M3) [16] to ResNet (M4) [19] and SalsaNext (M5) [20]. The
results are summarized in Rows 3-5 in TABLE 2. Overall,
the model is quite robust against the change of backbone.
ResNet obtains slightly better results while trading off quite
a lot of computation. We argue that doubling the runtime
here is not worth to gain about 0.5 mm in MERS. However,
in cases where runtime is not a concern, one is encouraged
to explore more with ResNet backbone.

Lastly, we investigate how the degree number in polyno-
mial fitting affects the results. We conduct experiments by
fitting polynomials of various degrees on the network out-
put (per-pixel robot centerline projected in 3D) and present
the summary of results in TABLE 3. Using polynomial
of degree 4 yields the best results, and we start to see
overfitting when it’s degree of 5 or higher.

Polynomial Degree | MERS METE
2 2.95 5.12
3 1.77 3.16
4 1.74 3.09
5 1.75 3.18
6 1.76 3.29

TABLE 3: Ablation analysis on polynomial degree

6 CONCLUSION

We presented a monocular approach to provide shape sens-
ing for the Continuum robots. The model takes as input
the RGB image and the binary segmentation mask of the
robot and predicts a list of 3D coordinates describing its 3D
location in the scene. We evaluated the proposed method in

5

a simulated dataset and presented quantitative and qualita-
tive results showing that it outperforms the baselines by a
large margin. Future work will include the extension of our
method to the real-world dataset and investigate the sim-to-
real transfer learning.
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