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Abstract—Without training processes facilitated with large image datasets, recovering a standalone noisy image can be challenging.
In this project, we plan to investigate the effect of combining traditional rule-based recovery algorithms with Deep Image Prior, a recent
advancement seen in neural networks image denoising, forming a new denoising pipeline. We prove that the combined method
outperforms the individual results for a diverse set of images. Additionally, we study the early stopping point mechanism under the
Deep Image Prior framework. We cannot observe a clear correlation between the stopping point and the intrinsic content frequency of
images, and factors that may affect the image restoration speed are yet to be discussed.

Index Terms—Computational Photography, Deep Image Prior, Image Denoising, Image Deblurring.

1 INTRODUCTION

UE to the hardware limitation of most modern digital
D cameras, noise and blurriness are prevalent in images.
The battle of dealing with these two elements is a long and
arduous journey, and the emerging technologies around ma-
chine learning and deep neural algorithms and techniques
are bringing it to the next level. In recent years, we have
witnessed neural networks that could denoise an image
from a completely noisy input or deblur from a single color
image, and still produce a sensible result. This remarkable
ability has extended beyond image recovery and led to
generative models that could produce artwork, attracting
substantial media attention and participants from outside
the field [1], [2].

However, most of these solutions generally require
ground-truth images in training, where the trained models
approximate the original image using patterns observed
from other images in the entire image set. This pipeline
is ideal for general-purpose images but sets barriers to
recovering images in a specific field where no ground-truth
images are available. Traditional denoising and deblurring
methods have long been dominant in this specific task, but
we have also seen substantial progress in the field of deep
learning. In this project, we intend to leverage both the
newest technologies in neural networks and traditional rule-
based methods to form a pipeline that can recover images
without training data. The main contributions of this paper
are summarized as follows:

1) We proposed a novel mechanism for combining DIP
with traditional image recovery methods, utilizing
denoising and deblurring on the corrupted input
image to enhance the model performance.
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2) We provided a performance summary of different
preprocessing methods when used as guidance of
the DIP framework.

3) We conducted an investigation on how different
input images, recovery methods, and sigma values
affect the highest PSNR and optimal stopping point
of the DIP training process.

2 RELATED WORK

Ulyanov et al. [3] proposed a powerful and effective method
for imaging processing called Deep Image Prior (DIP). Our
project will be mainly based on evaluating and extending
the DIP algorithm by using different image preprocessing
methods. DIP makes use of a deep convolutional neural
network to perform different tasks, such as denoising, in-
painting, super-resolution, and so on. DIP itself does not
require any information about the ground-true image. It
takes in a randomly generated noisy image as the input,
and it treats the corrupted image as our target to optimize
and approach to. During the learning process, a clear image
will be learned first before the corrupted image. Different
from other neural network-based denoising methods, DIP
itself is a non-training process that requires zero training
data and validation data. The whole process treats CNN
as the regularizer and thus is an optimization problem in
general. Depending on the fact that noise is more reluctant
for the CNN to learn since “the parametrization offers high
impedance to noise and low impedance to signal.” [3], we
can use proper methods of early stopping to prevent the net-
work from overfitting. The parameters will be approaching
a clear image in the process of optimizing.

Several methods were investigated to stop DIP iterations
before fitting to noise and thus prevent from overfitting.
Many early stopping strategies require the monitoring of
PSNR which needs clean images as input. However, in real-
world examples, clean images can be hard to retrieve, and
it slightly contradicts the objective of DIP. In 2021, Jo et al.
[4] designed an early-stopping technique which requires no
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Fig. 1. The combined image restoration pipeline.

clean images. It utilizes the DIP model complexity with re-
spect to the effective degrees of freedom which can be used
as a model overfitting measurement. In general, calculating
the degrees of freedom requires the ground truth image.
However, the degrees of freedom can be approximated with-
out clean images if the noise follows a Gaussian distribution.
In our paper, we will mainly investigate the relationship
between the early stopping point and the input image local
features.

At the same time, many extensions can be made based
on the idea of DIP. Bredell et al. [5] came up with an idea
that uses Wiener deconvolution to guide DIP for better
performance on image deblurring. The intuition behind
this is that deconvolution is better at reproducing high-
frequency artifacts and DIP is the opposite. Combining these
two tools indeed produces better performance and stability.
We may want to extend this idea and use different methods
of denoising and deblurring to compare the results.

3 PROPOSED METHOD

Our work is fundamentally based on the use of Deep Image
Prior (DIP) which was proposed by Ulyanov et al. [3]. As
discussed in Section 2, DIP uses the original corrupted im-
age as the target and then performs training on a randomly
generated noisy image. Instead of using the original cor-
rupted image, in our work, we attempt to perform several
image preprocessing methods on the corrupted image first
to remove the noise and blur and use them as the target of
the DIP model. Three traditional denoising methods, Wiener
Deconvolution, and a pretrained Neural Network is used as
our image preprocessing techniques. We will mainly record
two performance metrics which are our two objectives: the
maximum PSNR of the reconstructed image with respect
to our ground-true image, and the number of iterations
required to reach the maximum PSNR before overfitting.
This extended pipeline is shown in figure 1.

3.1 Background - Deep Image Prior

Deep Image Prior (DIP) is treated as the basis of our project
which utilizes a deep convolutional neural network to per-
form several image reconstruction tasks without the use of
any training data. This model is essentially based on the
general idea of minimization:

¥ = argminFE(z; g) + R(x) )

where E(z; ) is the task-dependent loss function, =g €
R3*HXW s our target corrupted image, and R(x) is the
regularizer which captures the general pattern of an image
to prevent from overfitting. The returned optimal solution
z* € R¥>*H*W g our desired clean image.

A popular choice and example of the regularizer term
R(x) is Total Variation (TV) which promotes a sparse gradi-
ent of the image; however, in DIP, an implicit prior captured
by a neural network serves as a parametrization z = fy(z).
Here, z is a randomly initialized 3D tensor that has the
same dimension as xz, and 0 is thus the parameter of our
neural network. This neural network parametrization can
be explained as follows:

2

,.CU* :fe*(Z) (2)

0 = argmiane(z) - x0’
0

This process can be done using traditional optimization
techniques such as gradient descent to obtain the optimum
0*. Thus, the reconstructed image can be easily obtained by
x* = fg-(2). Here, the loss function is the 12 norm capturing
the 12 distance between the target image z( and the image
returned from the network [3].

3.2

We used 6 image recovery methods in our work, and
they serve different purposes in the image reconstruction

Image Recovery Methods
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Fig. 3. Five Ground Truth Images Used in Task 2 Followup Experiments.

process. As in the real-world scenario, images can be both
blurry and noisy which is hard to quantify; in our work,
we prepared our corrupted image first by applying a
blurry kernel on its Fourier domain and then adding a
random Gaussian noise with three different noise levels:
o € {0.01,0.02,0.05}. In order to eliminate the effect of both
blurriness and noisiness, methods that are designed solely
for deblurring, solely for denoising, and for both deblurring
and denoising are all taken into account.

3.2.1 Traditional Denoising Methods

For the sole denoising purpose, we utilize three basic and
traditional denoising methods which are Gaussian Filtering,
Median Filtering, and Bilateral Filtering.

Gaussian Filtering is a naive denoising method that uses
a Gaussian low-pass filter that averages pixel values in the
local neighborhood. The way of averaging is based on a
Gaussian distribution, by replacing the noisy pixel with
surrounding pixel values, it reaches its goal of denoising
for some instances. In our example, we use a Gaussian filter
with a constant sigma value of 1.

Median Filtering serves a similar role as Gaussian Filter-
ing. However, unlike Gaussian, Median Filtering is a non-
linear method that takes the median pixel value within the
local neighborhood for every pixel [6]. In our work, we
applied median filtering with a window of size 3.

Bilateral Filtering is based on the idea of Gaussian
smoothing and is a more powerful non-linear smoothing
filter than the previous two [7]. Not only considering the
spatial distance between pixels but the distance of intensities
is also taken into account. Therefore, only pixel values with
similar intensities will be averaged, and thus it preserves
edges information while smoothing.

Image 1

Zebra 4 Zebra 5

3.2.2 Wiener Deconvolution

The method we chose to perform image deblurring is
Wiener Deconvolution [8]. In our case, it uses an estimated
blurring kernel as the point spread function and performs
inversing techniques. Unlike basic inverse filtering which
does not consider the potential noise level in the original
image, Wiener deconvolution handles the noise issue by
considering the signal-to-noise ratio (SNR) in its algorithm.
If no noise exists, the SNR is infinitely high, and Wiener
deconvolution is the same as inverse filtering in this specific
scenario. However, it turns out that the performance of
Wiener filtering has a tendency to decrease as the noise level
gets higher and noises are largely preserved; therefore, in
our work, additional denoising tasks should be performed.

3.2.3 Denoising and Deblurring Methods

As mentioned previously, in a real-world setting, both noisi-
ness and blurriness should be handled. To address this issue,
we used a basic pre-trained convolutional neural network
where U-Net is selected as the network architecture. This
U-Net is trained to perform both denoising and deblurring
and is based on images with noisy levels o € [0.005,0.01].
However, in practice, we'll also try larger noisy levels and
compare their performance.

Apart from using a single neural network to perform
both tasks, we also utilize a hybrid technique that combines
the Wiener Deconvolution and the neural network that
learns to denoise. More specifically, the deblurred images
using Wiener Deconvolution are passed to the neural net-
work to train it to learn denoising solely. Since Wiener is
sensitive to noise, adding a neural network for denoising
should yield a better result.
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TABLE 1

Performance of selected methods using a fixed image (Image 1) and three different noise levels.

sigma = 0.01 sigma = 0.02 sigma = 0.05
Initial PSNR | Maximum PSNR | Initial PSNR | Maximum PSNR | Initial PSNR | Maximum PSNR
Standalone 32.12 32.92 30.40 32.88 2523 32.75
Wiener 28.93 39.71 23.14 38.47 15.33 34.76
NeuralNet 37.39 39.64 28.06 38.26 19.11 35.47
Wiener+NeuralNet | 37.79 40.65 30.32 39.73 21.14 36.56
Gaussian 32.55 32.57 32.36 32.53 31.25 32.33
Median 32.74 32.87 32.32 32.81 30.26 32.58
Bilateral 31.91 31.97 31.64 31.92 30.01 31.73

Image 0 gt sm psnr (sigma = 0.05)

Image 1 gt sm psnr (sigma = 0.05)

Image 2 gt sm psnr (sigma = 0.05)
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Fig. 4. PSNR Curve for selected methods under the same sigma level and different input images. Curves are grouped by input images.

4 ANALYSIS AND EVALUATION
4.1 Preprocessing

Before running the DIP model with the inputs, it’s necessary
to apply the preprocessing methods to the corrupted image.
The process can be broken down into the following steps:

D
2)

Start with a clear image as the ground truth.

Blur the ground truth image and add noises to it.
There are three sigma values for the noise level:
[0.01, 0.02, 0.05]. This will produce three distinct
noisy images.

For each noisy image, apply the discussed denoising
and deblurring methods to it to generate six addi-
tional input images.

In summary, each ground truth image will lead to
three versions of noisy images. Then, each noisy im-
age will then lead to six denoised/deblurred input
images. This pipeline is shown in the first section of
figure 1.

3)

4)

4.2 Task 1: Evaluation on the maximum PSNR of the
reconstructed image with respect to our ground-true
image

For the first task, the goal is to investigate whether prepro-
cessing on the noisy input will improve the training result
of DIP in terms of PSNR. If so, which preprocessing method
would yield the best performance?

Three images with distinct contents and levels of com-
plexity were chosen for this task, as shown in figure 2.
Those images were first processed using the preprocessing
methods discussed above. Then, each input image was

trained iteratively using DIP for 6,000 iterations, and the
PSNR was recorded in each iteration. Table 1 shows the
summarized results, while figure 4 is a visual representation
of the PSNRs for the input images that were preprocessed
by different methods. The image and sigma were fixed here.

4.3 Task 2: Evaluation on the number of iterations re-
quired to reach the maximum PSNR before overfitting

For the second task, the goal is to figure out the factors
affecting the optimal early stop point. If multiple images
were processed the same way, will the training on those
images have similar early stop points? Or are there other
factors affecting it?

To answer those questions, we rearranged the training
results from task 1 and displayed the key numbers in table
2. The corresponding PSNR trends are shown in figure 6.

Then, we want to go one step further and generate our
own input data. We want to test images that have different
content frequencies but similar other properties. To achieve
this, we selected an image that contains random zebra
stripes and scaled them to four different zoom levels. The
largest zoomed image should have the lowest frequency,
and vice versa. We generated an additional image of com-
bined lowest frequency and highest frequency output using
the multiply color blend mode. Figure 3 is an overview of
the 5 zebra stripe images. Next, like Task 1, those images
were preprocessed and trained using DIP for 6,000 itera-
tions, and the corresponding PSNRs were recorded. Table 3
shows the summarized results, and figure 7 demonstrates
how the trends of PSNRS for different images differ during
the training.
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5 EXPERIMENTAL RESULTS

5.1 Task 1: Evaluation of Image Recovery Methods and
Resulting PSNRs

For Task 1, we want to quantitatively compare the per-
formance of using different image reconstruction methods
and also analyze the impact with respect to different noise
levels. The resulting PSNRs are shown in table 1, and some
observations of interest can be found:

5.1.1 Observation 1

Overall, we observed that inputs produced by Wiener, Neu-
ralNet, and Wiener + NeuralNet methods tend to perform
significantly better than the standalone corrupted image.
This conclusion is evident in figure 5. On the other hand,
inputs produced by Gaussian, Median, and Bilateral meth-
ods often have similar or even worse performance than the
standalone corrupted image.

However, we also observed that sometimes the initial
PSNR of the noisy input is higher than the inputs processed
by Wiener, NeuralNet, or Wiener + NeuralNet methods, and
it gets worse as the sigma increases.

For noise level 0 = 0.01, Wiener deblurring results in
an even lower initial PSNR than the original corrupted
image. Also, for the other two noise levels, three deblurring
techniques (Wiener, NeuralNet, and Wiener + NeuralNet)
all end up with a lower initial PSNR and it gets worse as
o increases. However, for all three deblurring methods, the
final maximum PSNR is still higher than the one using the
unprocessed corrupted image. This seemed strange at first
because we expected the preprocessing methods to improve
the quality of the noisy inputs. However, after a thorough
analysis of the methods and the resulting images, we re-
vealed the underlying reason: all three methods described
above were purely or partially deblurring methods. While
they do a good job alleviating the impact of the blurs, the
noises have been somehow magnified. This is especially
obvious for Wiener, which doesn’t have the additional de-
noising functionality that the other two have. Therefore, it’s
possible for the preprocessed inputs to have a lower PSNR
than the noisy ones. As a comparison, there are three other
preprocessing methods (Gaussian, Median, and Bilateral)
that perform only denoising to the noisy input, and they
tend to have high initial PSNRs.

However, after training 6000 iterations, all the deblurred
inputs (NeuralNet and Wiener + NeuralNet are counted
as deblurring methods although they also did denoising)

TABLE 2
Restoration speed of selected guiding methods for different images at a
fixed sigma level. Data was collected on the BSDS Images set.

Optimal Stopping Point (# of iterations)
Image 0 | Image 1 | Image 2
Wiener 1743 964 1527
NeuralNet 1143 823 907
Wiener+NeuralNet | 1527 1132 1455
TABLE 3

Restoration speed of selected guiding methods for different images at a
fixed sigma level. Data was collected on the Zebra images set.

Optimal Stopping Point (# of iterations)

Zebral | Zebra2 | Zebra3 | Zebra4 | Zebra5
Wiener 1931 2063 1621 1617 1905
NeuralNet | 1087 1044 959 1060 1415
Wiener+ | )5 | 1280 | 1166 | 1208 | 1753
NeuralNet

outperformed the noisy input significantly, while all the
denoised inputs yielded similar or even worse results. This
outcome is expected, as DIP is known for being prone to
image blurs, not noises. Noises won’t be learned by the
DIP model until later iterations, which minimizes its impact
on the results. However, if the input image is very blurry,
the DIP model is not capable of reconstructing the missing
features, thus resulting in less ideal results. Therefore, it’s
reasonable to conclude that images with a high noise level
but a low blurring level are more suitable inputs for DIP
than images with a low noise level but a high blurring level.

5.1.2 Observation 2

As the noise level o increases, the performance gets worse
for all 7 methods (including the standalone DIP). This makes
sense intuitively since with a higher noise level, it will be
harder for the deep neural network to learn the detailed
pattern in the images. However, for all sigma values, the
trend discussed in observation 1 is preserved.

Another intriguing phenomenon is that as sigma values
go higher, we can see more turbulence or fluctuations in
the PSNR curve during its converging process after the
peak PSNR is reached. These fluctuations shown in Figure
4 are usually manifested as a short-term rapid increase in
PSNR values, followed by a gradual decline to the pre-
fluctuation level. They can occur one or several times, and
fluctuations of different intensities may superimpose, result-
ing in compound fluctuations within a period. It is worth
noting that such fluctuations only appear under the method
guided by Wiener and NeuralNet. At the time being, we
cannot provide a reliable explanation for this turbulence,
and future work may be needed to investigate the cause of
such unusual patterns.

5.2 Task 2: On Factors that Affect Optimal Early Stop-
ping Points

For task 2, results for the first set of images (Image 0, 1, and
2) show that with the same amount of noise level added, the
early stopping points differ. The restoration speed for Image
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0 and 2 is significantly slower than that for Image 1. From
a purely qualitative perspective, the content of image 1 is
less detailed and has a low overall frequency. At this point,
therefore, we infer from the result that the intrinsic content
frequency of an image does affect the early stopping point.
This conjecture is visualized in Figure 8.

To validate this, the second set of images (Image 1, 2, 3, 4,
and 5) was generated, where the images only differ in con-
tent frequency with all other possible variables controlled to
a similar level. We expect to see that for images with fewer
details, i.e, lower content frequency, the PSNR curve reaches
peak value sooner than those with higher content frequency.
However, as seen in Figure 7, the expected pattern failed to
emerge.

6 DiISCUSSION

As illustrated in section 5, the three denoising methods
we chose seem to have little effect on the performance of
reconstruction. This might be caused by the corrupted im-
ages themselves since in our example the corrupted image
we created contained both noise and blur. Although the
images are denoised using those methods, the existence
of blurriness still largely interferes with our performance.
Therefore, if we want to dig into the effect of traditional
denoising methods, we should apply denoising to an image
that purely contains noise. The exact performance remains
unknown. However, we should not expect a great improve-
ment since those denoising methods involve applying a blur

PSNR

Early
Stopping
Point

» Iteration

Fig. 8. The standard Deep Image Prior curve. An ideal curve should
display a similar trend where it peaks in the middle, i.e, the “early
stopping point”, and converge to a lower value. In our hypothesis, the
difference between the peak and converged value (denoted by d) is
correlated to the noise level. The time that it reaches the early stopping
iteration 7. should be determined by the image content/frequency when
using a fixed method.

kernel to the image, we may end up losing some details
which are essential to DIP reconstruction.

In table 3, there seem to have no obvious patterns among
those 5 zebra images with different image complexities



which is not what we expected. One possible assumption
is that the complexity of our target image does make a
contribution to the early stopping point since it can be
shown clearly from table 2 that image 1 reaches its peak
significantly faster than the other two images. However,
image 1 has a much simpler complexity than the other two
images. While in our zebra stripe examples, the difference in
the level of complexity is not great enough to quantitatively
reveal the pattern of early stopping points. More datasets
with bigger differences in image complexity should be
tested to reveal whether the pattern exists. Apart from that,
since there are not enough training images in our example,
we can not conclude any general and obvious patterns
for the early stopping points. Therefore, larger experiments
should be performed to declare a more general pattern and
more accurate factors.

7 CONCLUSION

In recent years, the field of image denoising has seen signif-
icant progress with the advent of deep learning techniques.
However, without access to large image datasets for train-
ing, the task of recovering a standalone noisy image can be
a challenging endeavor. In this project, we took a deeper
dive into the DIP framework. We first identified the most
prominent characteristic of DIP, which is the fact that it does
not require any training data to perform image recovery
tasks. Then, we used seven image preprocessing methods
to alter the input and then feed it into DIP. Most of these
methods are traditional rule-based image manipulation al-
gorithms that do not need training data as well. We observe
that when combined with Wiener Deconvolution, denoising
NeuralNet, and the combination of these two methods, both
the output image quality and the restoration speed of DIP
increase significantly. For the other three methods, namely
Bilateral denoising, Median denoising, and Gaussian de-
noising, preprocessing images with them does not have an
obvious impact on the performance of DIP. We discussed
possible underlying explanations for this observation.

In another task, we set out to study an important con-
cept in the DIP framework: the early stopping point. We
designed a simple controlled study that plots the PSNR
curve change when altering the image content frequency.
From the result, we observe no clear pattern of stopping
point when altering the frequency. We suggest that further
investigation might be required to figure out the factors
affecting the restoration speed.

Through this research, we aim to shed light on the
potential of combining traditional image recovery meth-
ods with modern deep learning techniques to improve the
performance of image denoising algorithms. Our findings
have implications for the design and implementation of
future denoising pipelines, and highlight the importance of
considering the intrinsic properties of the image content in
the denoising process.

In conclusion, our study demonstrates the effectiveness
of combining traditional rule-based image recovery algo-
rithms with Deep Image Prior for improved denoising
performance. By leveraging the complementary strengths of
both approaches, we are able to achieve superior results for
a wide range of images. Additionally, our analysis of the

7

early stopping point mechanism provides valuable insights
into the underlying mechanisms of Deep Image Prior and
its relevance to the denoising process.
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