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Abstract—Medical Imaging is used by radiologists for diagnostic purposes and to check for abnormalities, and these imaging
techniques involve radiation. Overexposure to radiation can have an adverse impact on the human body, and using less radiation gives
us a noisy output. Hence, radiologists find it difficult as there is a trade-off between the amount of radiation that can be used and the
quality of the image. Moreover, noise in medical images can occur due to fluctuation of photons, a reflection of radiations from the
subject, or due to instrumental vibration or faults. The proposed approach is a pipeline which starts with denoising using GANs
architecture, in which two models have been trained, one for handling all kinds of noise and the second one specifically for Poisson
noise. Further, post-processing methods like single-shot HDR using Retinex Filtering and Edge Enhancement using unsharp masking
have been done to get a structurally more similar and enhanced denoised image.

Index Terms—Computational Imaging, Medical Imaging, Denoising, Generative Adversarial Networks, HDR, Edge enhancement

1 INTRODUCTION

WITH the advancement in deep neural networks, the
use and applications of computer vision have risen
quite rapidly in multiple domains ranging from robotics,
military, and autonomous vehicles to medical image pro-
cessing. The medical computer vision field is developing
quickly as this domain uses the theoretical aspects of com-
putational imaging methods and applies them to real-world
problems that directly help the populace. This motivated us
to use the techniques to solve such problems.

Most medical imaging techniques, such as X-rays, CT
scans, etc., all rely on radiation. We need better-quality
images so doctors and physicians can accurately and ef-
ficiently extract useful information about the underlying
concern from these images. To get a better image with
less noise, we need to expose the patients to high doses
of radiation that can have adverse effects on the human
body [1]. It is a constant struggle for radiographers to find
a_balanced exposure so that the image produced is not
nOy. X-rays are also very susceptible to noise because of
uneven scattering of photons which causes the receptors to
receive different amounts of photons which causes Poisson
noise in the images [2]. Apart from this, how the film
is processed and handled is another way of introducing
noise into the final image. On the other hand, speckle noise
manifests as a granular look in an image [2]. It§)caused by
random variations in the return signal from an object that
isn’t discovered to be larger than a single image processing
component [3]. We saw this as an opportunity to develop
a pipeline which, given a noisy x-ray image, constructs a
denoised and visually similar image. The proposed pipeline
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consists of multi-tier GANs-based [4] denoising architecture,
which focuses on denoising different types of noises with
different importance. We then post-process the images with
multiple computational imaging techniques to make them
visually similar to the ground truth image, thus retaining the
maximum possible information even after denoising. The
main reason for this is that after denoising, the images tend
to blur out; which can lead to the loss of essential features
of the i), like edges and contrast among different parts
under observation.

This will help the patients being x-rayed to face reduced
amounts of radiation which will be better for their bodies
without compromising the quality of the X-rays.This makes
it easier for doctors to deduce information froethese im-
ages.

2 RELATED WORK

Many conventional and new methods have been used to
denoise and enhance medical images to produce images
with less noise and more details. The conventional meth-
ods [5] used for image denoising include linear and non-
linear filters, which come under spatial domain filtering.
These filters have Gaussian Filters, Wiener Filtering, Median
Filters, Bilateral Filters and a few others. These filters can
eliminate a decent amount of noise, but that comes at
the trade-off of image blurring and losing edge details.
Bilateral and Non-local means have provided decent results
for denoising medical images [6] when preprocessing is
done before applying denoising techniques. Thresholding
techniques had to be used before applying Bilateral and
NLM filters to preserve edges and details. Comparing all the
conventional methods for medical images [7], it is evident
that a particular way performs better on a specific type of
noise only.

Nowadays, deep-learning based denoising methods are
prevalent, primarily based on CNNs. DnCNN is a mod-
ern method which introduced batch standardization and
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residual learning for denoising images [7] [8]. The main
demerit of the neural network methods for denoising is
that the learning is done on particular noise levels only, and
they don’t perform well on different noise levels [8]. CNN
architecture may move away from traditional methodolo-
gies and toward deep learning methods, yet, the significant
difficulty remains computational time and space. TV (Total
Variation) based regularization methods [7] have also been
proposed for denoising, and these are useful in solving the
issue of smoothness, but they have drawbacks. Flat areas
are approximated by a fixed constant resulting in a staircase
effect and sometimes loss of contrast [9].

The latest methods to denoise include denoising using
generative adversarial networks. Denoising using GANs
has been found to denoise real-world images, and the archi-
tecture of the model consists of the use of residual blocks,
skip connections, and batch normalization. The images
look real while preserving the edge details and avoiding
blurriness [10]. The learning-based methods for denoising
the images that use neural networks are trained on noisy
images that are artificially created from clean images with
a known type of noise. Real-world noisy images are very
different from synthetic ones and conventional methods
outperform learning-based methods when we denoise real-
world images [11]. Denoising using GANs follows a better
approach in the model buildigg; in this approach, the model
is trained on noise instead orhoisy images and denoises real
images as well [11].

As mentioned before, denoising images generate blur-
riness and can remove essential details from the images,
which is very harmful in the case of medical imaging.
Hence, it’s necessary to perform some preprocessing or
post-processing on images before or after performing the
denoising [7] [12]. HDR (High Dynamic Range) is a tech-
nique that can be used on X-ray medical images to enhance
and improve edge details [12]. The quality of the image
formed depends upon the amount of radiation (mAs) and
peak phen energy (kVp). Hence, images generated using
different peak photon energy exhibit variable visibility of
bones and tissues [12]. Therefore, combining x-ray images
with varying photons of peak energies and getting a single
image can provide a more enhanced and detailed result.
HDR images are generated using a set of low dynamic
range images of different exposures and then combining
them, but due to the unavailability of x-ray images with
different peak photon energy, [13] presents us with an
algorithm to obtain HDR image from a single image by
generating virtual images of different exposures and then
fusing these multi-level illuminations. In this algorithm, the
image is broken down into its reflectance and illumination
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components. The brighter areas are improved by scaling the
reflectance component, and the illumination component can
be turned up or down to generate images with different
illuminations [13].

Another post-processing technique is to increase image
sharpness by using the method of unsharp masking [14]. A
blurred image is generated, which is then subtracted from
the original image to obtain an edge-enhanced image. It
detects the borders of the various tones and boosts contrast
to make the image look sharper [14].

3 PROPOSED METHOD

The main contribution of this paper is a novel end-to-
end pipeline for denoising and enhancement of medical
images, x-rays in particular. The first and second parts of
the pipeline are dedicated to removing the various types of
noises present in radiographed images.

3.1 The Pipeline

As mentioned earlier, we devise a multi-tier denoising ar-
chitecture that follows a [“§Jshaped denoising technique
to provide breadth and depth of denoising across different
types of noises prevalent in these images. The first denoiser
offers the range of denoising by denoising the image for
different types of noises, viz Poisson noise, Gaussian noise
and speckle noise, which are frequently observed in x-
rays [2]. Since this component has tried to learn all kinds of
noise, it gives average performance across all noise inputs
(equal importance to each noise type). The second level
of denoising provides degEh by focusing on removing the
Poisson noise, which is the‘primary source of noise in radio-
graphed images [2]. The denoiser used in this component
specializes in removing Poisson noise, thus giving higher
importance to it in the overall structure.

One of the main issues with all the conventional
denoisifjg. techniques was that they blur out the images
quite ﬁot [5]. The reason behind this is that they try
to average out the neighboring pixels to get rid of the
randomness of the noise. But in this process, they lose
high-frequency details like edges in the images, thus
reducing the visual similarity with the ground truth
images. In natural images, this might work to some extent.
However, for medical images, this is highly problematic
because edges contain many essential details that are
useful in disease detection and general inference [7]. In
our denoising case, the blurring out of the edge, although
much less than traditional methods, still exists. To enhance
our images to contain such important information to
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the maximum possible extent, we perform some post-
processing methods to increase the visual similarity with
the ground truth images. The methods we have considered
for image enhancement are high dynamic range and edge
preservation techniques. The output image produced by the
denoiser is fed to a post-processor component, where the
image is converted to an HDR image using a single-shot
HDR conversion mechanism [13]. Then this image is passed
through an edge enhancer which reverses the effect of the
blur, which crept in the denoising process to make the edge
more prominent.

GAN:Ss for Denoising

In a generative adversarial network (GAN) [4], two
neural networks compete against one another in the form of
a zero-sum game, where one agent’s gain is another agent’s
loss (Fig. 2).

Let x be the data representing an image. The discrimi-
nator network, or D(z), generates a scalar probability that
x came from training data instead of fake image generated
by the generator. Reasonably, D(z) ought to be high when
2 came from training data and low when x came from the
generator. Since we are working with X-ray images, in this
case, D(z) requires an image with a resolution of 128x128.
With z acting as a latent space vector, the generator is now
defined by G(z). The generator’s objective is to determine
the distribution pirqinfrom which training data came to
produce fake samples from it.

As a result, D(G(z)) represents the likelihood (scalar)
that the generator G’s output is the actual image. The
fundamental concept behind a GAN model is to have a
Generator G that is trained to generate the desired image
from noisy or down-sampled input, and a Discriminator D
that is trained to distinguish between the original image
and the generated image. The adversarial generator and
discriminator model are trained simultaneously so that after
training, the generator would be proficient at producing
realistic-looking images. As a result, D seeks to increase the
likelihood that it correctly distinguishes between reals and
fakes (logD(x)), and G seeks to reduce the likelihood that
D will anticipate that its outputs are fake (log(1—D(G(2))).
Thus, the loss function is defined as [4]

mén max V(D,G) = Eprpy () [log D(2)]+

e
E.p. () [log(l — D(G(2)))]

3.1.1 Random Noise Denoiser

Fig. 3 depicts the Generator model’s architecture. We em-
ployed deep residual and convolutional neural networks so
that the generator could learn to reduce noise and produce
the fake image with little loss. Both the parameter selection
and the layering order are empirical. For this model, we try
to denoise the noisy images, which are a combination of
Poisson, Gaussian, and Speckle noise.

In the generator network, we created a deep residual
convolutional neural network with eleven convolutional
layers, three residual blocks, and two skip connections.
Overall, we perform Convolution (decrease channels), apply
a ResNet/Residual block, and finally achieve Deconvolu-
tion (increase channels). For deconvolution, we resize the
image and perform convolution to decrease the channel
length. Our model has an architecture of Conv-Residual-
Deconv. For the initial task of Convolution, we created a
Convolutional block that consists of three different layers.
At first, the input is passed through Convolutional Layer.
In the next step, Batch Normalization (BN) is applied.
Batch Normalization is a technique for training deep neural
networks that normalizes the contributions to a layer for
every mini-batch. This layer’s job is to take the output from
Convolutional Layer and normalize them before passing
them on as the input of the next layer. BN helps improve
the model performance, mitigate the internal covariate shift,
and apply a small regularization effect.

Finally, an activation function of the Parametric Rectified
Linear Unit (PReLU) is used. The non-saturating activation
functions, such as PReLU, enable us to train a deep neural
network by solving the vanishing gradient problem [15].
The slope of ReLU is zero in the negative range, so once the
neuron gets negative, it is unlikely to recover. It is known as
the dying ReLU problem, which can be resolved using ReLU
with a non-zero gradient for negative inputs [15]. Hence, the
coefficient is introduced as the learnable parameter in the
PReLU and is represented as

PReLU(z) = max(0, z) + a - min(0, ) 2

As shown in the Fig. 3, there are total 4 Convolutional
blocks.

The following layers are the residual layers, where a skip
connection between the residual network and the Convo-
lutional block is added. This residual network consists of
a Convolutional block which is then added up with the
previous output, and finally, a PReLU activation is applied.
This combination is stacked up to 3 layers. In this network,
the output channels remain changed, i.e., 128 with a filter
size of (3x3) with stride=1 and padding="same.”

Finally, we need to upscale or increase the channels of
the image. Hence, we resize the image and perform the
deconvolution with the help of the convolution block itself.
The deconvolution block consists of a resize function and
all the layers of the Convolution block. The skip connection
passes the input images to the end of the network so the
model in between learns only the noise. There are four
deconvolution blocks; further, a tanh activation is applied.
The tanh activation function is described as below:

e — e %

tanh(x) = prp— 3)
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This function has a -1 to +1 interval as its range. The
benefit of this function is that the zero inputs will be mapped
close to zero in the tanh graph and the negative inputs
will be highly negative. In order to match the output image
range, we employ this activation at the end of the network.
Tanh activation makes it possible to attain the noise range
[-1,1]. In this manner, the noise pattern can be learned by
the generator model, which can then attempt to reduce the
noise and produce denoised images that are close to the
actual data.

The discriminator network, which outputs the likelihood
that the given input (the generator’s output) is real or
fraudulent, is a straightforward convolutional network. This
network is made to produce a score for both the fake and
actual images. The network has a great ability to discrimi-
nate between genuine and false images, as seen by the fact
that it will provide a score very close to 1 for the real label
image and 0 for the created image. In our case, the images
labels are clear images, and the fake images are obtained by
the noised images after passing through the generator.

The network structure is quite simple, which consist
of series of Convolution layers, then connects with a full
link layer and finally was sent to the sigmoid function. The
structure for Discriminator network is shown in the Fig. 4.
There are total 5 convolutional blocks, which consists of the
convolution layer, batch normalization and a LeakyReLU
activation function.

The ”drying ReLU” issue is resolved by the LeakyReLU
activation function because it does not contain zero-slope
components. LeakyReLU is advantageous because we are
not dealing with negative values in this situation, and it also
expedites the training process because the mean activation

is close to zero. It is defined as,
LeakyReLU (z) = max(0,x) + (-ve) slope - min(0,z) (4)

Then, a fully connected Linear layer with sigmoid activation
function at last is added in order to normalize the confidence
score to a probability between 0 and 1.

3.1.2 Poisson Noise Denoiser

In this section, we try to eliminate the Poisson noise in the
medical images and try to enhance the quality of image
to achieve greater PSNR/SSIM value. For this model, we
created a similar dataset mentioned in the above section, but
only adding the Poisson Noise. This component provides
the depth part of the/ ) structured denoising.

Further, the similar structure GAN model was trained
and the PSNR/SSIM and the Generator/Discriminator
losses were noted. The graph for the same is attached below
in the Experimental Results section.

3.1.3 Single shot HDR

The algorithm implementation from [13] provides us with
an approach to obtain HDR images from a single image
of a single exposure by generating and combining multi-
level illuminations of a single image. The algorithm is based
on Reti theory, in which we estimate the illumination
component of the given image, and then the component
other than the illuminance component, which is left, acts
as the reflectance component. In this approach, the image
is divided into its reflectance and illumination channel, and
this decomposition is done using the weighted least square
filter.



We first obtain the luminance component from the im-
age, and to obtain the reflectance component, we take the
difference of luminance and the estimated illumination. For
the illumination estimation, we could have gone with the
gaussian kernel, but it has a drawback: it can lead to halo
artifacts [13] near the borders with bright background.
Hence, to solve this drawback, the algorithm suggests im-
plementing WLSF (Weighted Least Square Filter), which
solves the halo artifacts problem and is an edge-preserving
algorithm, helping us maintain even more details.

Once the decomposition is done, the reflectance channel
is scaled up, which helps enhance bright areas of the image.
For x-ray images, HDR is performed using images obtained
from x-ray beams with different peak photon energy. But, as
we have only a single image, we can use the illumination
channel to generate different illuminations for the image
by scaling the channel up and down. These illuminations
will correspond to different peak photon energies. Now, as
illumination is adjusted, increasing it in bright areas can lead
to saturation of pixel values and in these pixels, sharpness
cannot be enhanced easily. To prevent distortion, instead of
working on the illumination channel for these pixels, we
work on the reflectance channel. Selective reflectance scaling
has been usgg)to adjust these kinds of pixels. We fix a certain
threshold for illumination, and if we find it higher than the
threshold, we tune the reflectance.

For the generation of images with different illumination,
a scale factor which is sigmoid function is multiplied by the
luminance to darken or brighten the illuminance channel.
We find ratios between the standard exposure and under-
exposure areas and between over-exposure and under-
exposure. Based on these ratios, illumination is increased
more in darker regions than in brighter regions. After
generating the virtual images with different peak photon
energy, we use the tone mapping technique. Tone Mapping
has been done using a unique technique, where appropriate
weight maps are used to combine all the virtual illumination
images. At last, we combine the new illumination and
scaled-up reflectance to obtain the final image. The output
is an enhanced image with more details.

3.1.4 Edge Enhancement

We have implemented the unsharp masking method to
enhance the edges of the image after applying the GAN-
based denoising. In this method, we obtain the sharpened
image by subtracting the blurred image from the origi-
nal image. Unsharp masking is characterized in frequency
domain language as receiving a highpass filtered image
by removing a lowpass filtered version of itself from the
provided image. This method has the capability of taking
the human visual system response and can sharpen images
even in the presence of noise as well.

The high pass filter is used to improve the noisy im-
age utilizing the linear unsharp filtering strategy. Unsharp
masks help sharpen images. However, excessive sharpening
might cause the image to lose its natural appearance. This
approach has two significant limitations: the contrast in the
darker section is considerably more profound than in, the
lighter part. The approach also increases the noise, which is
an issue. In our example, Edge Enhancement was necessary
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to improve the details in the medical images so that essential
components are noticed.

3.2 Evaluation Metrics
3.2.1 Peak Signal to Noise Ratio

Any image processing could result in a significant loss of
quality or information. Objective and subjective methods
should be used to evaluate image quality [16], [17]. Subjec-
tive approaches don't take into account certain criteria and
are based on human judgment [18]. Comparing things us-
ing explicit numerical criteria is the foundation of objective
methods [19], [20], and there are many possible references,
including the ground truth or prior knowledge expressed in
terms of statistical parameters and tests [21], [22], [23]. In
this project, we use PSNR and SSIM to compare and analyze
the quality of the denoised images. Given a denoised image,
f and the original image g, both of size MxN, the PSNR
between f and g is defined as
2
255 ) 5)

PSNR(f, g) = 10log, (Wm)

where, MSE(f, g

N M
ZZ fii—9)" (6

When MSE approaches to zero, the PSNR tends to Infin-
ity. This shows that higher the PSNR, higher is the quality
of the image. On the other hand, lower PSNR means that
there is a significant numerical difference between the two
images compared.



3.2.2 Structural Similarity Index Measure

The other well-known metric used for measuring similarity
between two images is SSIM developed by Wang et al. [24]
SSIM is considered to be correlated with the quality per-
ception of HVS(Human Visual System). SSIM is designed
by modelling an image distortion as a combination of three
factors that are loss of correlation, luminance, and contrast
distortion. The SSIM is defined as

SSIM(f,9) = U(f,9) - c(f,9) - 5(f.9) @)

where, ) .

_ 2pfppg+Ca s . .
If,g9) = Bt +i§ o, This is luminance comparison, measures
the closeness of two images.
c(f,g) = (ﬁii—%fci This is contrast comparison, measures
the closeness of contrast of two images.

__ Ofgtcs PR . .
s(f,9) = e This is structure comparison function,

which measures the correlation coefficient between two
images.

3.3

Our implementation of each component was carried out
individually and then compiled together and tested. For
the implementation of GANs, we coded the structure from
scratch and used the layers of convolution, batch normaliza-
tion, and parametric ReLU provided in the PyTorch pack-
age. The preprocessing of the image included them being
resized down to 128x128 from 1024x1024. The reason for
this was the limited computing resources for the project.

The convolutional layers in the generator model have a
varying filter sizes as we down-sample and up-sample the
image in the network. During the entire training process,
the shapes of the images remained unchanged. In our case,
we have a filter size of (9x9) at the first and last forward
block. The remaining intermediate layers have a fix (3x3)
filter size. The padding is “same,” and the stride is set to
1. The convolution layers in the discriminator model have
varying output dimensions with different kernel sizes of
(3x3) and (5x5) with a stride of 2.

For the random noise denoiser, we added Gaussian,
Poisson and Speckle noise to the X-ray images. The Gaus-
sian noise was added with the zero mean gaussian distri-
bution with a standard deviation of 0.03. The Poisson noise
was similarly added with a factor of log of unique values of
image. Further, the speckle noise was created with the help
of Gaussian distribution of standard deviation of 0.01. All
these noises were injected into the original image randomly
with the help of numpy package in python.

As Poisson noise is prevalent in medical images, we
create a similar noisy dataset as above but with only Poisson
noise for training Poisson Noise Denoiser.

With the structure of the model ready and the pre-
processing of the images done, we started the training steps
of the pipeline. We trained the GANs model individually.
We trained each model with 200 unique chest x-ray images
with different types of noise added randomly to each image.
These 200 images were trained for 50 epochs resulting in
a total iteration of 10000. The batch size hyperparameter
was chosen to be 10. The learning rate used was 0.0002 and
was fixed throughout the training process. The optimizer
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we used was AdafEwith binary cross entropy loss in the
Discriminator model training.

Similarly, we used the Adam optimizer with binary
cross-entropy loss for Generator. But in this case, we also
added another loss function: the pixel loss, which quantifies
the pixel-wise similarity between the images generated by
Generator and ground truth. This was implemented using
mean squared error loss over all the pixels.

We trained both the models and saved the weights to a
ckpt file that can be loaded (we have provided this in our
code on https://github.com/apoorvdankar/MedGANS.
For the usability of the pipeline, we just load the content
of the ckpt file and call the Generator part of the GANS.
The test image passes through the Generators of the two
denoisers and then through the single shot HDR converter
and Edge enhancer to give the final output image.

4 EXPERIMENTAL RESULTS

The model was trained for 50 epochs with the given learning
rate and batch size. Fig. 7 represents the graph for Generator
and Discriminator Loss for both models. The evaluation
metrics for both models is reported in Fig. 8. The detailed
comparison of this method with conventional approaches is
given in Table 1. Further, in this section, we shall analyze
the denoised image qualitatively and quantitatively.

4.1 Qualitative Results

In the leftmost panel of Fig 6, we have four noisy images for
qualitative analysis and reporting. We randomly selected
these images using a random data loader from the test
images dataset directory. We then added above explained
noises at random to each of these images. The next image is
the output of the first component of the pipeline: Random
Noise Denoiser. We observe that the noise level in the image
has decreased on average but this has also blurred the
images a little bit. The third image is the output from the
Poisson Noise denoiser. Here also we see the noise level
has decreased but at the cost of blurring out the edges even
more. The penultimate image batch is the output of the post-
processing component. The results here include the output
only of the edge-enhancer. We noticed that adding the HDR
component decreases the PSNR quite a lot. We suspect we
might have to modify and hyper-tune the parameters of
single-shot HDR conversion to get the best results. We need
to try out the combination of HDR and EdgeEnhancer to
get optimal results consistent with our hypothesis. Here,
we have only included the results after applying Edge
Enhancer. We notice that this step increases the clarity of
edges a bit as compared to the previous step. Finally, the
last block is the ground truth image to which the noise was
added and all the processing steps were done.

4.2 Quantitative Results

This section will discuss the quantitative aspect of analyzing
the denoised Images. All metrics reported in this section are
averaged over 15 test images. In the experiment, we had
noisy images of PSNR of 25.88 dB and SSIM of 68.52.

The traditional methods give lower PSNR values com-
pared to neural networks. The Gaussian filter denoising
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Fig. 6. Component-wise output of the pipeline. Left to Right: Noisy Image, Output of Random Noise Denoiser, Output of Poisson Noise Denoiser,
Output of Post-processing component, Ground-Truth image. (Metric values averaged over this batch)

Fig. 7. Generator and Discriminator loss over training epochs for Left:
Random Noise Denoiser model Right: Poisson Noise Denoiser model
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Fig. 8. Metrics: PSNR and SSIM value over training epochs for Left:
Random Noise Denoiser model Right: Poisson Noise Denoiser model

with sigma=0.5 gave a denoised image of PSNR 29.59
dB/SSIM 0.86. The Median Filter with a kernel size of
7 gave us an image with PSNR 26.79/SSIM 0.81. Other
conventional methods PSNR and SSIM are mentioned in
Table 1.

We experimented with modern methods such as
ADMM+DnCNN and ADMM+TV solver. ADMM with
DnCNN as solver gave good results with the PSNR 30.14
dB and SSIM 0.91.

We also experimented with parameter tuning for each
conventional method (e.g., changing the sigma value). The
detailed results with PSNR and SSIM for each of the param-
eters for a particular method are mentioned in table 2.

Our methodology of using a GAN-based Random Noise
Denoiser and Poisson Noise Denoiser gave the best metric
values. The Random Denoiser gave a denoised image with
PSNR 31.92 and SSIM 0.893. The combination of Random
Noise and Poisson Noise denoiser gave the PSNR 32.27 and
SSIM 0.926. The Edge Enhancement improved the image
visual similarity, and hence we achieved the highest SSIM
with 0.933. The evaluation metrics for each method are
mentioned in Table 1

Method PSNR  SSIM
Noisy Image 25.88  0.68
Gaussian (o = 0.5) 29.59  0.82
Median Filter (size=7) 26.79 0.81
Bilateral (o = 1, 0—intensity=0.5)  30.79 0.89
NLM (o = 3, window=2 28.15 0.84
ADMM + DnCNN solver 30.14 0.91
ADMM + TV 28.73 0.89
GANs (Random Noise) 31.92 0.893
GANs (Random + Poisson) 32.27 0.926
GANSs + Edge Enhancer 29.36  0.933

TABLE 1
Metric comparison of different methods for denoising

Method Parameters PSNR SSIM
Gaussian Filter o (sigma) 0.5 29.59 0.82
1 27.15  0.90
2 23.63  0.82
Median Filter Filter size 6 26.42 0.82
7 26.79  0.81
8 25.20 0.78
Bilateral Filter o (sigma) 1 30.79 0.89
2 27.89  0.88
3 25.91  0.82
NLM o (sigma) 1 27.85  0.86
2 28.06 0.84
3 28.15  0.84
TABLE 2
Metric comparison of conventional methods with different hyper
parameters

5 CONCLUSION

In this paper, we propose an end-to-end novel pipeline
to perform medical image denoising, especially for x-rays,
with multi-tier GANs-based denoisers and post-processing
steps using single shot HDR and edge enhancement using
unsharp masking. We show that our GANs-based denoisers,
with their "T" shaped denoising technique perform better
than conventional denoising methods. The post-processing
steps enhance the images and make them more visually
similar to the ground truth image by amplifying the edges
which are quite important in medical images. We note that
using such post-processing methods decrease the PSNR
but increase the SSIM metric under specific conditions and
hyper-parameter values as mentioned earlier in the experi-
mental results section. An important future step will be to



come up with settings such that the PSNR is also increased
with these methods. Also it will be very useful to get some
domain experts’ comments on the outputs of the pipeline
which will help us modify the pipeline to be more suited to
the demands of the real world.
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