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Abstract—Image deconvolution is an ill-posed inverse problem which is solved with the help of a prior that encodes our understanding
of the space of viable solutions. Alternating-Direction Method of Multipliers (ADMM) is an optimization algorithm that provides a natural
way to encode a variety of priors for deconvolution. While previous work has shown that using a Gaussian denoiser in the z-update of
ADMM produces more natural reconstructions containing less noise and patches, some high-frequency details are irreversibly lost to
the blur (low-pass filter) that cannot be recovered by existing methods. We propose using Denoising Diffusion Models, a powerful class
of generative models that are shown to produce high quality images from noise, as a Gaussian denoising prior in ADMM. We
demonstrate higher quality reconstructions than previous methods and test our method on both in-distribution and out-of-distribution

samples.

1 INTRODUCTION

Deconvolution is the problem of estimating an image from a
blurry and possibly noisy measurement. Restoring a blurry
image to its true form has applications ranging from every-
day photography to medical and scientific imaging. Image
deconvolution is often framed as an inverse problem and
solved using iterative optimization techniques incorporat-
ing priors.

Alternating-Direction Method of Multipliers (ADMM) [1] is
a general optimization algorithm for inverse problems. It al-
lows us to incorporate priors based on our understanding of
the characteristics of the original image. Moreover, it allows
us to mix and match different image formation models (how
the image was corrupted) and regularizers/priors (how we
think a natural image looks) [6]. In particular, an existing
image denoiser can be used as a prior to produce clean
images when deblurring under Gaussian noise. Applying
learned denoising priors has been shown to perform well
for this task [4].

However none of these methods can recover the high-
frequency details of the target image that are irreversibly
lost when applying the blur kernel, which acts as a low-
pass filter. The only way to “restore” them is to hallucinate
them using a powerful generative model.

Denoising diffusion probabilistic models [3] (referred to
simply as diffusion models) are a recent development in
deep learning that are currently state-of-the-art in image
generation. Diffusion models work by iteratively denoising
an initial image to invert a forward noising process, and
are capable of producing high-quality images starting from
pure noise. In this project, we incorporate these powerful
models as denoising priors in the ADMM algorithm. We
demonstrate higher quality reconstructions than previous
methods and test our method on both in-distribution and
out-of-distribution samples.

2 BACKGROUND
2.1 Deconvolution priors

The problem of deconvolution is ill-posed; that is, there are
many solutions that satisfy b = Ax. A prior introduces
additional information that constrains the set of solutions
to those that are more likely based on our knowledge of
the specific problem. Arising from maximum a-posteriori
estimation, deconvolution with a prior solves the following
problem,
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Here, 1)(x) = — log p(x), where p(x) is the prior distribution
of x. This term is the prior, also called a regularizer in
imaging. It allows us to incorporate our understanding of
the image’s natural statistics into the deconvolution process.
The first term is the data fidelity term, which enforces
consistency between the reconstruction of x and the mea-
surements b.

2.2 Alternating-Direction Method of Multipliers

ADMM is an iterative method to solve convex optimization
problems, such as Equation 1. In imaging, Equation 1 is
rewritten as,

1
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Both terms depend on x. To eliminate this shared depen-
dency, we introduce a slack variable z and reformulate the
optimization problem as,

minimize f(x)+g(z)
subject to Dx —z =0 @)
1
where f(x) = o [|Ax = b|[;, 9(z) = \(2)



Applying Lagrangian optimization to solve Equation 3:

L(x,z,y) = f(x) + g(z) + y" (Dx — z) )

where y is the dual variable. In particular, we take the
augmented Lagrangian where we introduce a new quadratic
penalty term and a scaled dual variable, u = ¥. We can
write the augmented Lagrangian as:

L(x,2,y) = [(x) +g(z) + § [IDx —z + ull; ~ £ [lull; ©)

ADMM proposes a three step iterative approach to solving
this problem. In order, we update x, z, and then u using
the update rules below. The x-update can be implemented
efficiently in the Fourier domain as:

x — (ATA + pDT™D)'ATb + pDTv (6)

The z- and u-updates are then given by:

z < argmin g(z) + g [|lv — z||§ ()
u+<—u+Dx—1z (8)
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The form of Equation 7 is similar to that of a general
Gaussian denoising problem. Using our original definition
for g(z):

The z-update

9(2) + £llv - zll;
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=yY(z) + 2\ v — 2|

In other words, we are free to treat the z-update as a
general denoising where we may employ any denoiser of

our choosing;:
z=7D <V, i)
p

This powerful framework allows us to experiment with
different denoisers in conjunction with ADMM.

(10)

2.3 DnCNN

Denoising Convolutional Neural Network (DnCNN) [8] is a
residual CNN that learns to remove the latent clean image
to produce the noise present in an image, which is then
subtracted from the input image to produce the denoised
image. In prior work it has been used as a denoising prior
in ADMM [6].

2.4 Bilateral filtering

A standard Gaussian filter only accounts for spatial prox-
imity. The bilateral filter [5] is a Gaussian filter that also
accounts for photometric proximity. The filter kernel is given
by:

1
BF = A Z Go,(|lp —all)Go, (Ip — Iq)Iq
P qes 1)
W, = Go,(llp — all)Go, (Ip — Iq)

qeSs

where G, is a 2-D Gaussian kernel. The G, term attenuates
contributions from pixels that are located further away,
while the G, does the same for pixels whose intensities
differ from the pixel of interest. The intensity term makes
the bilateral filter edge-preserving. Since pixels separated by
an edge will generally differ in intensity, G, assigns low
weight to pixels across an edge, thus preventing the edge
from being blurred. In effect, this filter performs similar to
a Gaussian denoiser while preserving details such as edges
and areas of sharp contrast.

2.5 Non-local means denoising

Denoising methods that use local filters only consider fixed
neighbourhoods surrounding the pixel of interest. For in-
stance, Equation 11 considers a neighbourhood surrounding
pixel p. In contrast, the non-local means (NLM) algorithm
operates on the principle of self-similarity [2]. That is, NLM
uses Gaussian neighbourhoods that may be located at an
arbitrary distance from the pixel being denoised. Buades
et al. [2] define the NLM algorithm as:

NL[)(i) = w(i,j)v())
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The patch similarity is computed as [[v(N;) — v(N;)|[3,
where v(N) is the Gaussian neighbourhood in the image
v with standard deviation o. The motivation behind this
algorithm is the idea that some images contain several
nearly identical patch configurations that appear redundant
in the clean image, but provide information to restore one
another in a noisy image (e.g. natural images). Despite its ef-
fectiveness, a major drawback of NLM is its time complexity.
Given a search window of S x S, a Gaussian window size
of G x G, and image dimensions N x N, the complexity is
O(S2G*N?).

2.6 Total variation prior

Most natural images are characterised by large patches of
pixels with similar intensity values with occasional sharp
change in intensities at the edges. The Total Variation
prior encodes this property of natural images by encour-
aging sparsity of edges (or gradients). The gradients of
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Fig. 1. The forward and reverse processes used in denoising diffusion
models [3].

the image(D,x and Dyx) are calculated by taking the first
derivative of the image in the horizontal and vertical di-
rections by convolving the finite difference kernels d,d,
over the image x. The regularization term produced by the
TV prior is the norm of the gradient over all points in the
image.

Dyx)7) (13)

N
x) =3/ (Dax)?) + (

2.7 Diffusion denoising models

Recently, diffusion denoising models have succeeded in
generating high-quality images from pure Gaussian noise
[3]. The training process consists of two steps: First, a
forward process (called diffusion) where noise is gradually
added to the image sample over T steps until it resembles
pure noise, and second, a reverse process where the original
image is recovered by iteratively learning the added noise
which needs to be subtracted from the current image to
obtain the next less-noisy image in the sequence. The re-
sulting generative model can then be sampled by iteratively
denoising either a pure Gaussian noise sample or a partially
noisy image.

The forward process is a Markov chain that adds Guassian
noise with variance 3; to a scaled result of the previous step
in the sequence:

T
q(x1:7[%0) = H (x¢[xs-1) (14)
q(x¢|x¢—1) = N (x5 /1 = Bexi—1, Be]) (15)

As t goes to a large value, the /1 — 3; factor makes the
mean gradually go from xg to 0. In other words, the final
image is a zero-mean Gaussian distribution with variance
Br, roughly equal to 0.

The reverse denoising process to obtain the sampled image
X, from the noisy image xr, is modelled by:

T
po(Xo0.7) = p(xT H (x¢-1%¢) (16)

= N(Xt—1§ po(X¢,t), BI) (17)

pe(xt—1|xt)

where pig(x¢,t) is parameterized by a neural network.

3 METHOD

We propose using a diffusion model as a denoising prior in
the ADMM algorithm to guide the deconvolution process
towards better noise-free solutions. Diffusion models can be
used to denoise an image by injecting it into the reverse pro-
cess at the appropriate timestep according to the variance of
noise present in the image.

Since the forward diffusion Markov chain consists of a
sequential addition of Gaussian noise, the distribution of the
noisy image at timestep ¢ in the forward process conditioned
on the initial noise-free image ¢ is given by Equation 4 in
Ho et al. [3]:

N (x4 Vaixy, (1 — ap)I)
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Consider an image y corrupted with zero-mean Gaussian
noise of variance 3* to give ¥ = y + N(0,3*), which
can be rewritten as y = N (y,3*). Comparing this with
the forward diffusion process q(x:|xo), we compute the
timestep where (1 — &;) is closest to 5*. This is the timestep
t* at which the noisy image should be injected into the
reverse process to produce a noise-free image.

q(xtx0) = (18)

where a; =1 — B; and oy =

t* = argmin[f* — (1 — a;)] (19)
t

Since the noise variance schedule 3; is fixed, it is easy to
compute t* given a diffusion model and a noisy image.

We use this diffusion denoiser as a denoising prior in
ADMM by plugging it into Equation 10.

4 EXPERIMENTS
4.1 Setup

In each experiment, we start with a clean image, convolve
with a blur kernel, apply synthetic Gaussian noise of vari-
ance o2, perform deconvolution with a given method and
compare the resulting reconstruction with the original clean
image. We experiment with ¢ = {0.01,0.1,0.5}, ranging
from a low to very high noise level.

To measure the performance of each method, we use PSNR,
a measure of the quality of reconstruction from a degraded
image, as well as subjective visual quality. We also compare
the total and per-iteration runtime required to achieve the
optimal PSNR across priors.

4.1.1 Baselines

In each experiment, we produce baseline results with the
DnCNN, bilateral filter, NLM and TV priors.

For each noise level o in our experiments, we train a
DnCNN on RGB images from the BSDS300 dataset that are
corrupted with that noise level. Our DnCNN consists of 5
convolutional layers with kernel size 3 and 32 channels in
each intermediate layer.

The ADMM update steps are performed on each channel of
the image separately. In cases where the denoiser operates



TABLE 1
Parameters used in the ADMM priors

Prior Gs size G, size o or S

Bilateral 5x5 %5 0.1 025 -
NLM 5x5 - 0.1 - 5x5

vV - - - - -

on RGB images, we perform three ADMM updates on the
different channels in parallel and rebuild the RGB array
before performing denoising.

The remaining priors are used out of the box, and their
parameter settings are listed in table 1.

4.1.2 Diffusion denoising prior

For the diffusion denoising prior, we use a pretrained
DDPM model from the Hugging Face Diffusers library [7]
trained on the CelebA-HQ-256 dataset consisting of face
images. We modify the sampling code to take an initial
image, compute the timestep ¢t* and start the reverse process
(sampling) at this intermediate timestep.

4.2 Experimental scenarios

We first evaluate the performance of ADMM with diffusion
denoising prior in deconvolving images belonging to the
same class that the model was trained on (in-distribution).
Since the model is trained on face images, we use an image
of a face for testing.

We then evaluate the performance of our method on a non-
face image (out-of-distribution) to test whether the diffusion
model can act as a general denoising prior, as well as to
test the importance of the model’s learned class-specific
knowledge in guiding the reconstruction towards a good
solution.

4.3 Tuning

TABLE 2
Number of ADMM iterations required to achieve optimal PSNR with
various denoising priors

o DnCNN  Bilateral NLM  Diffusion
0.01 75 30 5 4
0.1 10 5 5 5
0.5 10 3 5 15

4.3.1 ADMM timesteps

The performance of a denoising prior is sensitive to the
number of ADMM iterations. We observe this to varying
degrees across the baselines and the diffusion prior. To
this end, we compute the PSNR between the ground truth
and the intermediate result of ADMM at each iteration. We
tune each method by identifying the iteration at which the
PSNR peaks or saturates. We assume that the general trends
observed here would hold when our methods are applied
on novel images. We exclude NLM from this tuning process
as it is computationally costly, instead opting to keep the
number of iterations fixed. We expect that its performance
would improve if we were able to tune it freely.

4.3.2 Diffusion timesteps

In our main experiments, we computed the timestep t* at
which we inject our image in the reverse process using
Equation 19. The same t* is used at every iteration of
ADMM. However, we intuit that as the ADMM iterations
progress, the intermediate image contains less noise, so the
noise variance 3* used to compute t* must be reduced.

To this end, we experiment with two more schemes for
scheduling 3*. First, we vary the noise variance as 3, =
Aiff, where 0 < A < 1, throughout the N iterations of
ADMM. Second, we linearly decrease the noise variance as
Biy1 = B —c,where 0 < c < %

Due to time constraints, we did not produce detailed results
from the latter two schemes. However, a comparison of the
convergence properties is presented in Figure 4.

5 RESULTS AND ANALYSIS

Figure 2 shows the results of our first experiment, where
the test image belongs to the class that the diffusion model
was trained on (in-distribution). At low noise levels ¢ =
{0.01,0.1}, even though all baseline methods produce a
reasonable image, our method produces the cleanest image
with the least artifacts. At the high noise level o = 0.5, our
method produces an image belonging to the data distribu-
tion (faces), while all baselines fail under the extremely high
level of noise.

Figure 3 shows the results of our second experiment, where
the test image is out-of-distribution from what the diffusion
model was trained on. Surprisingly, at low noise levels
o = {0.01,0.1} our method still produces reasonable re-
sults, although it is outperformed by the DnCNN denoiser.
At the high noise level ¢ = 0.5, our method begins to distort
the image significantly.

Table 3 shows the runtime per ADMM iteration with the
different priors. Diffusion models are known to be slow
and computationally expensive due to their iterative nature.
Furthermore, the runtime of ADMM with the diffusion prior
depends on the noise level through the timestep t*. The
baselines are much faster to use, although they present a
trade-off between computational cost and quality.

5.1 Hallucination of details

Interestingly, the reconstruction metric PSNR fails to capture
the visual quality of the generated images. Even though
our method produces the best visual quality on the in-
distribution image, it scores a lower PSNR than the DnCNN
prior. This suggests that our method “hallucinates” details
that were irrecoverably lost to the blur. While it is not
reflected in the PSNR, this behaviour is beneficial in cases
where the measured image is not highly corrupted.

Images corrupted with high noise are injected deeper into
the reverse process, such that more diffusion steps are
required to completely denoise it. A consequence of this
is that additional unwanted details are hallucinated by the
diffusion model. This is illustrated in figure 2, where the
reconstructed face image from ¢ = 0.5 is qualitatively
different from the original image.
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Image

ADMM + TV ADMM + NLM

PSNR: 30.8 PSNR: 32.6

|
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Original Image
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PSNR: 35.5 PSNR: 31.2

PSNR: 30.3 PSNR: 22.3

PSNR: 23.3 PSNR: 13.2

%

ADMM + Diffusion

PSNR: 32.3

PSNR: 29.0
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Fig. 2. In the first experiment, we perform deconvolution of an image belonging to the same class (in-distribution) that the diffusion model was
trained on (faces). The image is corrupted with noise levels of o = {0.01,0.1,0.5}. The number of iterations of ADMM is chosen for each prior such
that the resulting PSNR between the reconstruction and the ground truth is as high as possible. The diffusion prior is comparable to the DnCNN in

terms of PSNR, but produces the visually cleanest results.

Noisy & Blurry
Image

PSNR: 28.2 PSNR: 27.2

PSNR: 16.4

ADMM + TV ADMM + NLM

ADMM + DnCNN ADMM + Bilateral

PSNR: 30.3 PSNR: 29.7

PSNR: 8.2

ADMM + Diffusion

PSNR: 27 4

Fig. 3. In the second experiment, we perform deconvolution of an image belonging to a different class (out-of-distribution) than what the diffusion
model was trained on (faces). The image is corrupted with noise levels of o = {0.01,0.1,0.5}. At low noise, our method performs comparably to

the baselines. At high noise however, our method produces a distorted result.
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Fig. 4. The timestep ¢* at which we inject our image into the reverse process depends upon the noise variance. Scheme 1 is constant noise variance
for all ADMM iterations. Scheme 2 reduces it exponentially with A = 0.92. Scheme 3 reduces it by a constant amount ¢ = % each ADMM iteration.
Reducing the noise variance, either exponentially or linearly, both lead to an increase in PSNR over the ADMM iterations.

5.2 Diffusion model tuning results

The reverse diffusion process produces a noise-free image
from pure noise iteratively across 1000 steps. For images
with finite noise, we estimate the injection timestep ¢* to be
somewhere within this range. Table 4 shows t* for different
noise levels.

TABLE 3
ADMM runtime with various priors

Method s/iteration
TV 0.013
NLM -
DnCNN 0.058
Bilateral 5.4
Diffusion @ o = 0.01 18.75
Diffusion @ 0 = 0.1 67.36
Diffusion @ o = 0.5 179.16

TABLE 4
Injection timestep for various noise levels

o t*
0.01 27
0.1 97
0.5 258

As mentioned in section 4.3.2, we naively assume a con-
stant noise variance 8* throughout all iterations of ADMM.
However, an effective denoising prior will reduce this noise
variance across iterations, such that 8}, ; < ;. Therefore
we experiment with reducing the noise variance in every
ADMM iteration. While we were not able to incorporate
these to produce our main result due to time constraints,
we examined its effect on a face image corrupted with noise
level o = 0.1. By employing either linear or exponential
schemes, we can prevent degradation in the PSNR due to
excess generation of fine details, as illustrated in figure 4.

6 FUTURE WORK

The diffusion model used in this work can be replaced with
a latent diffusion model (LDM), which has the following
advantages. First, LDMs are significantly more computa-
tionally efficient. Second, LDMs pretrained on large diverse

datasets have recently become available, which could enable
a class-agnostic denoising prior overcoming the limitation
revealed by experiment 2. Third, modern LDMs can be
readily guided/conditioned on text prompts, which could
enable a greater degree of control. However, an issue with
using LDMs as denoisers is that it is challenging to estimate
the intermediate timestep corresponding to the image noise
level.

As mentioned before, our method is prone to hallucinating
details, which may or may not be advantageous. Future
work could explore the scheduling of diffusion timesteps
over ADMM iterations to control the amount of generated
detail depending on the amount of degradation in the
observed image.
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