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1. Introduction

Continuum Robot refers to the subcategory of robotic
manipulators that do not contain rigid links or identifi-
able joints. Due to their narrow curvilinear shape, struc-
tural compliance, and miniaturization capability, they have
been researched for applications involving cluttered envi-
ronments, such as minimally invasive surgery [3], non-
destructive inspection [5], and space/sea exploration [7, 10].

Performing precise motion control of continuum robots
requires real-time and accurate shape sensing. Model-based
shape-sensing methods are sensitive to unknown external
loads, and sensor-based methods take up valuable space in
the robots and pose challenges to miniaturization. Thus,
we approach visual shape estimation with potential applica-
tion scenarios in mind — image from a single viewpoint at
a time (monocular input) is almost always achievable (e.g.,
X-ray), but a stereo setup or depth camera may not be avail-
able. The purpose of the project is to investigate the feasi-
bility of monocular visual shape estimation for a continuum
robot in terms of accuracy and computation time. If suc-
cessful, the method would efficiently close the control loop
thus improving performance for many continuum robot ap-
plications.

2. Related Work
2.1. Monocular Depth Estimation

Accurate depth estimation is a fundamental task in many
applications including scene understanding and reconstruc-
tion. The state-of-the-art methods for depth estimation of-
ten involve an encoder-decoder style architecture that esti-
mates the distance of each pixel relative to the camera [12].
Inspired by the development of the Convolution Neural Net-
work (CNN), depth information can now be extracted from
monocular images.

Various approaches have been developed for this task.
One technique is to leverage transfer learning and use a
high-performing pre-trained network as an encoder for fea-
ture extraction [1]. This allows the method to achieve a
state-of-the-art performance even with a very simple de-
coder [1]. Another paper by Wong et al. proposed to use
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an RNN-based method that incorporates LSTM units with
convolution layers [ 1]. This configuration takes advantage
of previous images and depth information through recurrent
units and thus achieves the best performance when running
on a continuous video sequence [ 1].

2.2. 3D Reconstruction of Continuum Robot

For 3D shape reconstruction of continuum robots,
vision-based shape-sensing techniques have been validated
to provide more direct and accurate measurement than
solely using kinematic modeling [9]. One way to do this is
to first extract the robot/needle curve through segmentation
and then estimate the 3D points for shape reconstruction us-
ing epipolar geometry analysis [2]. Burgner et al. achieved
a mean error of 0.473 + 0.353 mm on an anthropomorphic
liver phantom with tumors and vessels [2]. Another method
by Dalvand et al. uses a stereo vision system and a 3D re-
construction algorithm based on the closed-form analytical
solution for quadratic curve reconstruction in 3D space [4].
This method achieves a maximum measurement error of 0.5
mm for the tip position and length and 0.5 degrees for the
bending and orientation angles [4].

While some of the results from previous research are
promising in terms of accuracy, their suitability for real-
life application is limited by slow speed, the requirement
of multiple cameras or input images, and the dependency
on tip- or body-mounted markers [4]. Additionally, there is
a lack of common hardware or software benchmarks in the
field, and some approaches are application specific or use
simplifying assumptions to achieve good performance.

3. Method

We start by presenting the problem setup and then ex-
plain the proposed approach in detail. Specifically, we pro-
pose a two-stage model and the overview of the network
is depicted in Figure 1. The model consists of (A) Depth-
Net which predicts pixel-wise depth values from RGB im-
ages; (B) Inverse Projection module, which takes the pre-
dicted depth value, the binary robot mask, as well as the
given camera extrinsic and intrinsic matrices and re-projects
points back to 3D; (C) ShapeNet, which predicts the robot
shape from the point cloud.
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Figure 1. Overview of the Framework

3.1. Problem Formulation

Assume we are given an RGB image of the robot,
Irgp € RIXWX3 taken by a camera with extrinsic pa-
rameter 7' € SFE(3), intrinsic parameter K € R3*3, and
resolution H, W. Assume the binary occupancy mask of
the robot in the image is known as O € B *W_ The goal is
to find the position of the robot in 3D, parameterized by the
3D coordinates of M evenly-spaced points on the centerline
of the robot, denoted as P, € RMx3,

3.2. DepthNet for Depth Sensing

We adopt an encoder-decoder style network [1] based
on 2D CNNs as DepthNet for predicting the depth at each
pixel. Specifically, it takes as input the RGB image of the
robot Ircp and outputs the predicted depth map, denoted
as D € RFXW  We supervise the depth learning using L2
regression loss. The per-pixel depth loss is computed as
follows, and we take the average of the loss that belongs to
the robot (using the given occupancy mask) as the total loss.

Ldepth, u, v — ||du,v - du,v||2 (1)
where &u,v and d,, are the predicted and ground truth
depth value at index (u,v) on the image.

3.3. Inverse Projection

Assume accurate camera parameters are obtained from

fm 0 (%)
calibration where K = | 0 f, wg| is the intrinsic ma-
0 0 1

trix, and T € SE(3) is the extrinsic. We transform the
points to 3D using the predicted depth map d as the follow-
ing.
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We then use the provided binary mask of the robot to filter
the points, denoted as P;,, € RYN*3 and N is the number of
points belong to the robot.

3.4. ShapeNet for Shape Estimation

We design a network similar to PointNet [6] for esti-
mating the shape of the robot given the 3D point cloud. It
takes as input the 3D coordinates of the observed robot in
the form of a point cloud, P;, € RN*3_ The first part of
the network tries to learn a per-point transformation, and
the second part is expected to learn point-wise features fol-
lowed by a max-pooling layer to obtain the global feature of
the point cloud. The output of ShapeNet is a predicted set
of M points on the centerline of the robot that are evenly-
spaced, denoted as P,,¢ € RMx3_ Similar to DepthNet, we
supervise the shape learning using L2 regression loss.

4. Evaluation

We train and evaluate the proposed model on a custom
dataset collected from simulation. Common metrics used
in continuum robot research are adopted to measure the ac-
curacy of shape sensing and tip tracking. In the absence of
common baseline methods or benchmarks, we plan to com-
pare accuracy with results reported in the literature from
different methods.

4.1. Dataset

We collected a custom dataset using an existing sim-
ulator. The simulated tendon-driven continuum robot is
200 mm in length and 10 mm in radius with a protective
sleeve. Randomly sampled robot configurations are ren-
dered with the Visualization Toolkit (VTK), where we save
512 x 512 RGB and depth images (Figure 2) along with
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Figure 2. Sample Image Data from Custom Dataset

camera configuration and ground truth robot shape. Cur-
rently, the dataset contains 10000 robot configurations. We
plan to make the dataset more realistic by adding texture to
the robot and noise, and increase the size of the dataset.

4.2. Metrics

Shape sensing for continuum robots has typically been
evaluated in terms of mean error of robot shape (MERS)
and mean error of tip tracking (METE) [8]. Although they
have been calculated differently across literature, we de-
fine MERS to be the average Euclidean distance between
the predicted set of evenly-spaced points, P,,; € RM*3,
and corresponding ground truth points across different con-
figurations in the robot’s workspace. We also constraint
M > 10 so the points are representative of the robot’s over-
all shape. METE is calculated in the same way but only ac-
counting for the tip position. We will evaluate our method
against these two metrics with and without external loading
to better reflect application scenarios. The target accuracy
is 1 mm for the method to be comparable with existing ap-
proaches while only requiring monocular input.

5. Milestones

* Nov 16: Finalize proposal
* Nov 23: Finalize on simulation dataset generation

* Nov 25: Train and Fine-tune Depth Sensing network
on the simulated dataset

* Nov 30: Train and Fine-tune Shape Estimation net-
work on the simulated dataset

* Dec 3: Train and Integrate the two-stage network
* Dec 8: Finalize poster and report for presentation
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