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1 Introduction

Neural Radiance Fields (NeRF) [7] nowadays become a hot topic in the area of computer vision and
graphics. By combining deep learning and traditional volume rendering methods, NeRF achieves
great improvements in modeling and reconstructing 3D scenes with photo-realistic rendering quality.
NeRF’s strong ability to represent 3D objects is favored by a wide range of related 3D vision or
graphics tasks, including novel view synthesis [1, 2], 3D content creation [6, 11, 9], visual SLAM
[5, 16], relighting [3, 15, 4], etc.

Although NeRF method is able to synthesize novel view images with promising visual qualities,
NeRF models often fail to accurately represent shiny surfaces with high specular reflectance. Instead
of learning a solid, smooth surface for those shiny regions, NeRF tends to misinterpret the view-
dependent specular reflectance as emitting light sources under the real surfaces. This erroneous
behavior of NeRF also results in the poor quality of the extracted surface on the shiny regions, because
the fake internal light sources have to be able to transmit through the internal volume for synthesizing
view-dependent reflectance effects. Verbin et al. also discussed this issue in their work [10], please
refer to their paper for a more detailed analysis.

There are two lines of work that attempt to address the problem of learning specularity in NeRF. The
first direction is to make NeRF’s rendering more like a surface rendering [13, 14, 12]. Instead of using
volume density to represent 3D geometry, the methods in this line use surface-based implicit geometry
representation to ensure higher surface reconstruction quality for their surface-based rendering The
work in the second direction sticks with NeRF’s volume representation and puts more effort into the
modeling of view-dependent radiance prediction MLP (e.g., Ref-NeRF [10]). They thus improve the
model’s capability for representing complex reflectance on the pure object surface.

These abovementioned works are able to improve the quality of representation for the challenging
specular reflectance, but they do have limitations. First, these methods are costly to train. Because
their optimization process involves the normal (the computed gradient), the actual training time for
these methods could be even longer than vanilla NeRF [7]. Second, these methods cannot be easily
used in existing rendering frameworks. Since the environment lights are implicitly encoded into the
neural parameters, we cannot change the surface reflectance to accommodate the new environment in
the game or movie, though these models learn good surface reflectance for a specific static scene. To
this end, we want to propose an efficient NeRF model that is able to capture more accurate specular
reflectance and is also able to decompose an accurate environment representation from NeRF’s neural
models.

The ideas this work might refer to are from instant-NGP [8] and Ref-NeRF [10]. Instant-NGP
combines multi-level spatial hash tables and neural implicit representation to achieve fast training
and inference speed for NeRF. We will consider using instant-NGP as our backbone model to achieve
training speedup !. Since such a hybrid NeRF model with discrete features may hurt the continuity
of reconstructed surfaces, we might need to propose extra regularizations to ensure the high quality

'Fast training is super important for the time-limited course project.



Figure 1: NeRF’s fake emitters under the object surface.

of reconstructed surfaces. Ref-NeRF is the current state-of-the-art method for learning specular
reflectance. This method uses reflected/outgoing radiance directions to condition the directional
MLP that outputs the specular radiance, however, this work does not explicitly learn or represent the
environment light, though its large directional MLP model does implicitly learn the environment
lighting information, otherwise it cannot synthesize the shiny surfaces with the best quality. It
would be beneficial if we can extract the environment light from such models. We hope the explicit
parameterization of the environment light could help NeRF model get even higher rendering quality
and also enable image-based relighting.
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