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Abstract—Generating realistic 3D objects and rendering them at arbitrary viewpoints is important to scale the content creation and
sensor simulation for robotics training the testing. To achieve this goal, we need to learn a 3D generative model that is able to
synthesize 3D objects with diverse and accurate geometry, robust and photo-realistic appearance, and can be rendered efficiently. The
generated 3D contents thus can be immediately deployed to facilitate downstream applications. Existing works on 3D objects
generation usually cannot generate high-fidelity geometry, or cannot generate photo-realistic renderings compared to real images. This
introduces a large domain gap when composing those assets with real images. In this project, we plan to propose a 3D
geometry-aware framework that learns 3D assets generation from real-world data. We model the shape and appearance of the 3D
object using an implicit neural feature fields, and utilize the differentiable volume rendering and neural rendering to synthesize the 2D

image.

Index Terms—Neural Scene Representation, Volume Rendering, Genarative Model

1 INTRODUCTION

Inspired by the tremendous progress in 2D image gen-
eration [1], [2], [3], 3D content generation has attracted
more and more attention in recent years. Existing works
demonstrated the high-quality generation in different rep-
resentations including point cloud [4], [5], [6], [7], voxel
grid [8], [9], [10], [11], [12], mesh [13], [14], [15] or implicit
geometry [16], [17], [18], [19]. However, these works usually
focus on the synthetic datasets where the observations are
dense and the objects are created with simplified materials
and lighting conditions. Those assumptions will not hold
in the real world. Specifically, the observations are often
sparse and noisy (e.g., noisy segmentation masks, imperfect
calibration and localization, etc). Therefore, the quality for
generated meshes is not sufficient for the real applications
(See Figure N in the state-of-the-art work [19]) such as
realistic sensor simulation for self-driving.

In this project, we will focus on the object-level in-the-
wild 3D model generation. Built on top of the existing
approaches (Pi-GAN [18], EG3D [16] and GET3D [19]), the
ultimate goal is to generate a diverse set of 3D vehicles that
contains realistic baked texture (more advanced material
modeling is not considered) and can be rendered for actor
insertion. Specifcially, we will explore two directions 1)
volume rendering based approach (EG3D), 2) differentiable
rendering based approach (GET3D). Since both works have
released the code and partial pre-trained models, we plan to
use the public codebase and finetune on the real data. The
overall pipeline can be summarized as follows: Given some
latent codes, the network will produce some implicit feature
grids or SDFs; We render the images at random viewpoints
given the implicit representations either by volume render-
ing the feature grids or using differentiable mesh extraction
and rendering; Finally, we use a GAN to judge whether
the rendered images are real or fake. The full pipeline is
differentiable and end-to-end trainable.

After experimenting with these two approaches, we will
analyse the performance and potentially propose some new

techniques to improve the performance. Here are some
initial thoughts: (1) Since the real world observations are
quite sparse (several images with limited viewpoints), it
is usually challenging to generate without sufficient data
priors. We could add some template meshes (e.g., vehicle
CAD models) as an initialization and let the network to
predict the vertex offset, scale, etc. (2) We could first use the
pre-trained models that already consumes the class specific
priors and then plug some mapping layers for style transfer.

In summary, we would like to bridge the gap between
synthetic and real 3D generation. The generated high-
quality 3D vehicles can be potentially used to create an
alternative asset bank compared to expensive/unrealistic
3D CAD models or inefficiently reconstructed assets that
are widely used in the industry.

2 RELATED WORK

Existing works on 3D generation from images can be
divided based on the 3D representations they used and
the supervisory signals. Occupancy networks [20] leverage
implicit representations to learn 3D reconstruction from
the functional space. PointFlow [21] learns to generate 3D
point clouds from images with point-wise supervision. Tex-
ture3D [22] proposes to reconstruct 3D meshes and textures
from images. Those methods generally rely on 3D super-
visory signals. However, since 3D models are relatively
expensive to obtain, these approaches are hard to generalize
to real-world scenarios.

In addition to reconstruction leveraging 3D signals, there
is also a category of works that generate novel views
without 3D supervision. NeRF [23] is a pioneering work
that proposes neural radiance field for novel view syn-
thesis. Numerous papers [16], [17], [18], [24] have been
trying to improve NeRF for 3D-aware novel view synthesis.
However, these methods are restricted to view synthesis



of objects or simple indoor scenes, and cannot effectively
handle complex driving scenarios.

3 EXPERIMENTS AND PLANS
3.1 Datasets

We plan to conduct experiments on the real world Pan-
daSet [25]. PandaSet is a dataset captured by the self-driving
vehicle platform equipped with 6 cameras (front, front-left,
left, front-right, right and back cameras) and two LiDARs
(a 360° mechanical spinning LiDAR and a solid forward-
facing LiDAR). The cameras and LiDARs are calibrated.
PandaSet annotates instance-level 3D bounding boxes for
common traffic participants in urban scenes, which can
be used to extract camera images and LiDAR sweeps for
diverse set of vehicles, motorcycles, etc. We are primarily in-
terested in learning vehicle generation model, since vehicles
are the most common actor in self-driving scenes.

3.2 Metrics

To evaluate the quality of our generations, we compute
both geometry and appearance metrics on the generated
shapes. For geometry, we adopt the aggregated point cloud
as ground-truth shapes, and use the Chamfer Distance to
compute the Minimum Marching Distance between the gen-
erated shapes and the ground-truth shapes. For appearance,
we compute the FID metric between the observed camera
images and our rendered camera images for the vehicles.

3.3 Future Plans
3.3.1 Prepare the datasets (Nov 17th - Nov 20th):

We will use the annotated 3D vehicle bounding boxes in
PandaSet to obtain the LiDAR point cloud and cropped
vehicle images for each vehicle in the dataset. In order to
obtain the segmentation mask, we will use the off-the-shelf
algorithm to segment the vehicles from the backgrounds.

3.3.2 Implement the model (Nov 20th - Nov 27th):

We will build on top of the official repository for EG3D
and GET3D. We choose StyleGAN as our initial architecture
for generator. The feature map generated by the StyleGAN
can be used to derive the implicit representation of the
generated assets, from which we can render the camera
image, sihouette and LiDAR point clouds. We train a dis-
criminators to classifier whether the inputs are real or fake.
The generator is trained to maximize the likelihood of the
discriminator output.

3.3.3 Analyze and improve the model (Nov 27th - Dec 4th):

After implementing the model, we will conduct experiments
and tune the hyper-parameters / architecture, and analyse
the algorithm to find the optimum designs.

3.3.4 Write report and prepare poster (Dec 4th - Dec 7th):

We will summarize the results, write the reports and prepare
the poster for presentation.
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