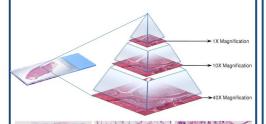
Investigating Priors for Deconvolution in Histopathology

Vishwesh Ramanathan Medical Biophysics, University of Toronto

Motivation

We are often interested in digital scans of histology slides for computer aided analyses



- Scanners are very sensitive to small bumps in tissues, leading to out of focus
- Lot of work on different regularizers for image deconvolution based on different assumptions, which may not be valid for histopathology
- This work evaluates different priors under assumption of non blind deconvolution and Adam optimization

Related Work

- Total Variation(TV)[1] works very well for natural images but has shown to produce staircase effect in medical images[2]
- Hessian Schatten Norm[3], similar to TV but applied on hessian, has been shown to work well in fluorescence imaging^[4]
- For digital pathology, there has been works on deconvolution using deep learning[5], however the effect of different priors have not been explored

References

[1] Osher, Stanley, Martin Burger, Donald Goldrah, Jinjun Xu, and Wotao Yin. "An iterative regularization method for total variation-based image restoration." Multiscale Modeling & Simulation 4, no. 2 (2005). 460-489.

[2] Lysaker, M., Lundervold, A., and Tai, X.-C., "Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time." IEEE transactions on image processing 12(12), 1579–1590 (2003)

[3] Lefkimmitatis, S., Ward, J. P., and Unser, M., "Hessian schatten-norm regularization for linear inverse problems," IEEE transactions on image processing 22(5), 1873–1888 (2013).

for linear inverse processing.

[2013].

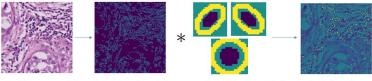
[4] Ilkoma, H., Broxton, M., Kudo, T., and Wetzstein, G., "A convex 3d deconvolution algorithm for low photon count fluorescence imaging," Scientific reports 8(1), 1–12

algorithm for low photon count fluorescence imaging, Scientific reputs o(i,j,i-1), (2018), [5] Jiang, Cheng, Jun Liao, Pei Dong, Zhaoxuan Ma, De Cal, Guoan Zheng, Yueping Liu, Hong Bu, and Jianhua Yao. "Blind debluring for microscopic pathology images using deep learning networks." arXiv preprint arXiv:2011.11879 (2020), [6] Dornsker, M. D. and Varadhan, S. S., "Asymptotic evaluation of certain markov process expectations for large time, i," Communications on Pure and Applied Mathematics 28(1),1—47 (1975).

New Technique

$$\begin{split} \vec{b} &= \vec{a} * \vec{x} + \eta \\ \mathrm{minimize}_x \frac{1}{2} ||\mathbf{A}\mathbf{x} - \mathbf{b}||^2_{\ 2} + \lambda \Psi(\mathbf{x}) \end{split}$$

- Different priors were tried for given blur kernel, such as Total Variation, L1, L2, Hessian Schatten norm, Laplacian
- Three novel priors were proposed:
 - · Maximize cells: The cells must have sharp boundaries and should be well dissected compared to its adjacent surrounding cells. Hence maximizing the number of cells roughly may lead to this effect



· Cross Entropy: The deconvolved image should give high probabilty for a model trained to detect blurred(Q) vs in-focus image(P)

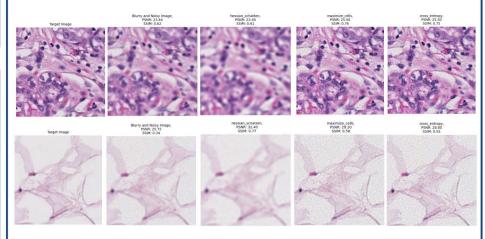
$$\Psi(\mathbf{x}) = -log(T(\hat{x} \in \mathbb{P}|\hat{x}))$$

• KL Divergence: The deconvolved image should be as far apart from the blurred image. Donskar-Varadhan Representation^[6] of KL divergence is used for this

$$D_{KL}(\mathbb{P}||\mathbb{Q}) = \sup_{T:\Omega \to \mathbb{R}} \mathbb{E}_{\mathbb{P}}[T] - \log(E_{\mathbb{Q}}[e^T])$$

$$\Psi(\mathbf{x}) = -(T(\hat{x} \in \mathbb{P}|\hat{x}) - T(b \in \mathbb{Q}|b))$$

Experimental Results



Lamd	la Blur Kernel	No Prior	Anisotropic TV	Isotropic TV	Hessian Schatten	L1
0.05	$(10, 10, \sigma = 1.5)$	19.49 ± 1.08	26.59 ± 2.00	26.16 ± 1.75	26.33 ± 1.65	19.012 ± 0.94
	$(30, 30, \sigma = 4.5)$	24.54 ± 2.46	25.44 ± 3.37	25.50 ± 3.32	24.87 ± 2.68	24.03 ± 2.19
	$(60, 60, \sigma = 6.5)$	24.16 ± 3.16	24.23 ± 3.53	24.29 ± 3.52	24.17 ± 3.22	23.70 ± 2.83
0.5	$(10, 10, \sigma = 1.5)$	19.49 ± 1.08	26.06 ± 3.38	25.88 ± 3.15	27.07 ± 2.75	11.04 ± 0.20
	$(30, 30, \sigma = 4.5)$	24.54 ± 2.46	23.94 ± 3.61	23.77 ± 3.49	24.67 ± 3.29	11.81 ± 0.27
	$(60, 60, \sigma = 6.5)$	24.16 ± 3.16	23.20 ± 3.56	23.02 ± 3.50	23.46 ± 3.36	11.78 ± 0.34

Lamda	Blur Kernel	L2	Laplacian	Maximize Cells	Cross Entropy	KL Divergence
	$(10, 10, \sigma = 1.5)$	19.49 ± 1.08	19.54 ± 1.07	19.49 ± 1.08	19.48 ± 1.08	19.48 ± 1.08
0.05	$(30, 30, \sigma = 4.5)$	24.55 ± 2.46	24.55 ± 2.46	24.54 ± 2.46	24.54 ± 2.46	24.54 ± 2.46
	$(60, 60, \sigma = 6.5)$	24.16 ± 3.16	24.16 ± 3.16	24.16 ± 3.16	24.15 ± 3.16	24.15 ± 3.16
0.5	$(10, 10, \sigma = 1.5)$	19.516 ± 1.06	20.01 ± 1.02	19.49 ± 1.08	19.43 ± 1.07	19.46 ± 1.08
	$(30, 30, \sigma = 4.5)$	24.56 ± 2.46	24.59 ± 2.49	24.54 ± 2.46	24.45 ± 2.41	24.52 ± 2.44
	$(60, 60, \sigma = 6.5)$	24.17 ± 3.16	24.16 ± 3.17	24.16 ± 3.16	24.12 ± 3.15	24.13 ± 3.15