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Motivation h
Event Camera
. Detect pixel-wise binary brightness changes in
the scene and output asynchronous sequences
of “events”
° Event Stream: E' = {e;}¢=1= { (X, Vie» ties D) =1
. Advantages: High dynamic range, microsecond-
level temporal resolution, and no motion blur
. Applications: well-suited for high-speed use

cases such as driving scenarios

Event Data Denoising

. Problem: Methods for denoising RGB images
cannot be directly used on noisy event data due
to the difference in data representations

. Our goal: To explore deep neural networks’
capabilities in terms of denoising event data, and
evaluate the performance of denoising on
classification task
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Figure 1: 3D visualization of an event stream.
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Event Voxel Representationl(?]
* Divide event streams into portions with equal temporal
length and accumulate them into spatio-temporal

voxels
» Events of opposite polarities are handled separately
» The value of each voxel represents the number of
occurred events

Event Denoising — EventZoom(2l

* Built upon the 3D U-Net backbone

» Raw events are voxelized to 3D tensors as the input
to the denoising network

Datasets

- DVS128 Gesture Datasetl®! captures 11 different
types of human gestures movements

» N-Caltech101 Dataset!! contains event data of 101
different classes of static objects

Event voxelization
_
Stream H

Proposed Denoising Pipeline )

Raw event stream is converted to event voxels for both polarities

3D U-Net processes and outputs clean voxels of the same dimension as
the input voxels for downstream classification

In each down-sampling block, the spatial data dimension is halved, and
the number of channels doubles. The process is reversed during up-
sampling blocks
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Figure 2: Our event denoising pipeline based on a 3D U-Net backbone.
4 Experimental Results )
Clean Noisy Denoised

Figure 3: Denoising results shown as a single time channel event image from N-Caltech101 (top) and
DVS128 Gesture (bottom). Red pixels represent positive events, green pixels represent negative
events, and yellow pixels indicate that events of both polarities are present.

Classification accuracy (%) on noisy test sets from both datasets
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*(1) Classification accuracies on clean test sets from DVS128 Gesture and N-Caltech 101 are 93.36% and
QS.OI%, respectively.




