An Attention-based Multi-Scale Feature Learning
Network for Multimodal Medical Image Fusion

s o Meng Zhou'2, Xiaolan Xu', Yuxuan Zhang'
TORONTO Department of Computer Science, University of Toronto, Canada
2The Hospital for Sick Children, Toronto, Canada

e : - N -
Motivation (" Materials and Method 3
* Multi-modal medical images can provide doctors
with _a_wealthi of information about a patient's « Data: The Whole Brain Atlas | 184 pairs /\'
condition. This can help them make an accurate : | ;
diagnosis and determine the best course of Data pre-processing: cT ca_regmemd MRI
treatment.
+ Analyzing multiple images can be time-consuming %
and tedious. - - g
=
? Normalization Sample test set Train-validation split
* Model Architecture
ﬁg’ﬁ * The attention mechanism improves the
a%ag? @A D feature expression capability by producing
_W weights to each individual pixel accordin
g g
to their importance
(%) tment. i et () Bl ot
» Image fusion is a way to combine important features
from several images into a single image. In
multimodal image fusion, doctors can get gain more « Three different losses are
information from the fused image that is more incorporated in the training
comprehensive and contains more details. phase: L2 distance, image e g
gradient differences, and ;uage
OBJECTIVE: propose a feature learning perceptual differences
framework for multimodal medical image
fusion using Convolutional Neural p ’ o (2 cumene st () somei s
Networks with Attention and Residual \ Plpellne Overview Y,
mechanism to improve the fusion
performance 4 Experimental Results )
\_ J | + Qualitative Results
r
Related Work

+ The traditional method of medical image fusion
focuses on the transform domain and can be
applied at the pixel, feature, and decision levels.
Neural networks with multi-scale decomposition
are effective in dealing with uncertainty and
improving fusion efficiency. a) CT source

+ Hermessi et al. [1] proposed a CNN-based method
in the shearlet domain for extracting high-frequency
fusion feature maps. Lahoud et al. [2] proposed a
real-time image fusion method using only the
pretrained VGG19 model.

+ Fuetal [3]introduced a residual pyramid attention

structure: MSRPAN framework, which combines d) MSRPAN [3] e) MSDRA [4] f) Our
the residual attention and pyramid attention
mechanisms in the fusion process - Quantitative Results

Between algorithms:

+ Lietal. [4] proposed the MSDRA network, which
combines a residual network and attention to
capture important detailed features without causing
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