Continuum Robotics and NeRF for 3D Reconstruction of Subglottic Stenosis

Jinjie Sun, Julia Wiercigroch
Department of Computer Science, University of Toronto

Motivation

- Subglottic stenosis (SGS) is a rare disease that gradually narrows the airway between trachea and vocal cords
- Clinicians only get a top-down view from endoscopic exams to determine the length and width to justify surgical intervention

Figure 1: Top-Down View of SGS from Real (Top) and Simulated (Bottom) Endoscopic Video

 Computer-assisted diagnosis with continuum robotics and endoscopic 3D reconstruction can provide clinicians with a measurement tool for SGS

Figure 2: Proposed System for Measuring SGS

 Goal: Compare neural radiance field methods to reconstruct a virtual SGS model with sparse camera viewpoints, limited texture, and scene specularities

Related Work

Structure from Motion Reconstruction

 Textureless surfaces, reflections and poor illumination makes it difficult to detect and match features [1]

Neural Radiance Fields (NerF)

- · Model considers RGB reconstruction loss
- Training time is long and requires significant number of images of the same object [2]

Neural Radiance Fields with Monocular Depth and Normal Cues (MonoSDF)

- Model considers RGB reconstruction, depth, normal and Eikonal losses [3]
- Additional losses help reconstructions from sparse viewpoints and complex scenes [3]

References

- Velez, A., Marcinczak, J., Grigat, R., Structure from motion approaches to 3D reconstruction in minimal invasive laparoscopy, ICIAR, 2012
- [2] Mildenhall, B., Srinivasan, P., Tancik, M., et. al., NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, ECCV, 2020
- [3] Yu, Z., Peng, S., Niemeyer, M., et. al., MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface Reconstruction. NeurIPS, 2022

Methods For Virtual SGS Reconstruction

Figure 3: Virtual SGS NeRF Reconstruction Workflow

Figure 4: Overview of NeRF and MonoSDF Algorithms

Experimental Results

- Trained 3 models with Unity data
 - NeRF with the full dataset (59 images)
 - NeRF with the subset of the dataset (35 images)
 - MonoSDF with the full dataset (59 images)

Table 1: PSNR results from reconstructed models and ground truth

Method	Training Epoch	Mean	Standard Deviation	Image 0	Image 3	Image 8	Image 45	Image 50
NeRF	1	25.32	1.30	24.25	26.87	26.82	24.9	23.75
NeRF(35 Image)	1	17.28	1.20	16.69	15.80	16.50	18.56	18.84
MonoSDF	500	18 89	2 27	20.97	20.79	20.45	16.25	16.00

Figure 5: Rendering results of different reconstruction models on the test images

Figure 6: Rendering results of NeRF on different simulated camera positions